K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

\(\frac{a}{c}=\frac{c}{d}=>\frac{a^2}{c^2}=\frac{c^2}{b^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)

\(\frac{a}{c}=\frac{c}{b}=>\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\left(dpcm\right)\)

20 tháng 10 2018

\(\frac{a}{c}=\frac{c}{b}=>ab=cc\)

\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-ab+ab-a^2}{a^2+ab}=\frac{b.\left(b-a\right)+a.\left(b-a\right)}{a.\left(a+b\right)}\)

\(=\frac{\left(b+a\right).\left(b-a\right)}{a.\left(b+a\right)}=\frac{b-a}{a}\)

20 tháng 6 2023

\(a,A+B=x^2-3xy-y^2+1+2x^2+y^2-7xy-5\)

\(=x^2+2x^2+\left(-3xy-7xy\right)-y^2+y^2+1-5\)

\(=3x^2-10xy-4\)

\(b,C+A-B=0\Rightarrow C=B-A\)

\(=\left(2x^2+y^2-7xy-5\right)-\left(x^2-3xy-y^2+1\right)\)

\(=2x^2+y^2-7xy-5-x^2+3xy+y^2-1\)

\(=x^2+2y^2-4xy-6\)

\(c,x=2;y=-\dfrac{1}{2}\Rightarrow C=2^2+2\left(-\dfrac{1}{2}\right)^2-4.2.\left(-\dfrac{1}{2}\right)-6\)

\(\Rightarrow C=\dfrac{5}{2}\)

6 tháng 4 2017

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)

\(\Rightarrow ac+bc-a^2-ab=ac+a^2-bc-ab\)

\(\Rightarrow bc-a^2=a^2-bc\)

\(\Rightarrow2bc=2a^2\)

\(\Rightarrow a^2=bc\left(đpcm\right)\)

Vậy...

14 tháng 10 2017

hoc lop may truong nao

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

a,bb,c là như thế nào bạn nhỉ?

21 tháng 7 2021

nhanh lên với ak

21 tháng 7 2021

Ta có :

a^3+b^3+c^3-3abc

=(a+b)^3+c^3-3ab(a+b) - 3abc

=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)

=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

18 tháng 1 2021

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Dấu ''='' xảy ra <=> a = b = c = 1