giải pt:
\(2\left(x^2-4x\right)+\sqrt{x^2-4x-5}-13=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
\(\sqrt{5-4x}=a\)
\(\sqrt{x+3}=b\)
Ta có
\(a^2+4b^2=17\)
Pt ban đầu
<=>\(a+2b+4ab=13\)
Đến đây ta giải hệ pt
\(\int^{a+2b+4ab=13}_{a^2+4b^2=17}\) <=>\(\int^{a+2b+4ab=13}_{\left(a+2b\right)^2-4ab=17}\)
Đặ a+2b =u
ab=z
Khi đó hệ pt trở thành
\(\int^{u+4z=13}_{u^2-4z=17}\) <=>\(\int^{u=13-4z}_{\left(13-4z\right)^2-4z=17}\)
từ đây ta sẽ tìm ra u và z
Từ đó thay ngược để tìm ra a và b
thay vào tiếp để tìm ra x,y
hơi dài chứ ko ngắn đâu Thắng
a, Ta có: \(\Delta'=1-m+3=4-m\)
Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow4-m>0\Leftrightarrow m< 4\)
b, ĐXXĐ: \(x\le\frac{9}{4}\)
\(pt\Leftrightarrow\sqrt{\left(9-4x\right)\left(x-3\right)^2}=\left|-2x+5\right|\sqrt{9-4x}\)
\(\Leftrightarrow\sqrt{9-4x}\left(\left|x-3\right|-\left|-2x+5\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\\left|x-3\right|=\left|-2x+5\right|\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\x-3=-2x+5\\x-3=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{4}\\x=\frac{8}{3}\left(l\right)\\x=2\end{matrix}\right.\)
Vậy pt đã cho có 2 nghiệm \(x=2;x=\frac{9}{4}\)