K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

     

     \(p^2+2p+5⋮\left(p+4\right)\)

\(\Rightarrow p^2+4p-2p-8+13⋮\left(p+4\right)\)

\(\Rightarrow p\left(p+4\right)-2\left(p+4\right)+13⋮\left(p+4\right)\)

\(\Rightarrow13⋮\left(p+4\right)\)

\(\Rightarrow p+4\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)

\(\Rightarrow p\in\left\{-17;-5;-3;9\right\}\)

18 tháng 8 2021

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p2  là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

HT

p = 1

nha bạn 

chúc bạn học tốt nha 

9 tháng 7 2017

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p2  là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

19 tháng 12 2023

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẻ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố

5 tháng 2 2022

Xét p=2

⇒ \(2^2+2^2=4+4=8\left(L\right)\)

Xét p=3

⇒ \(2^3+3^2=8+9=17\left(TM\right)\)

Xét p>3

⇒ p+ 2= (p2 – 1) + (2p + 1 )

Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.

Do đó:  2p+p2là hợp số (L)

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

5 tháng 2 2022
23 tháng 10 2016

khong hieu

ban oi

tk nhe@@@@@@@@@

xin do

bye$$

14 tháng 3 2020

\(p^2+2p+5=p^2+4p-2p-8+13=\left(p^2+4p\right)-\left(2p+8\right)+13\)

\(=p\left(p+4\right)-2\left(p+4\right)+13=\left(p-2\right)\left(p+4\right)+13\)

Vì \(\left(p-2\right)\left(p+4\right)⋮p+4\)\(\Rightarrow\)Để \(p^2+2p+5⋮p+4\)thì \(13⋮p+4\)

\(\Rightarrow p+4\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)\(\Rightarrow p\in\left\{-17;-5;-3;9\right\}\)

Vậy \(p\in\left\{-17;-5;-3;9\right\}\)

30 tháng 4 2022

Đáp án:P^2+4P+5=P(P+4)+5.

để P^2+4P+5 là bội số của P+4

=>P^2+4P+5/P+4 là số nguyên

=>P(P+4)+5/P+4 là số nguyên

=>p+5/P+4 là số nguyên

vì P là sô nguyên

=>để P+5/P+4 là số nguyên

=>P+4 là ước của 5

P+4 thuộc {+-1:+-5}

=>P thuộc {-3;-5;1;-9}