Tính A = 1 + 4 + 42 + 43 + ... +4n ( n > 2 , n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng đồng dư
a)\(3^{4n+1}=3^{4n}.3=\left(3^4\right)^n.3=81^n.3\)
81 đồng dư với 1 (mod2)
=>81n đồng dư với 1 (mod2)
=>81n.3 đồng dư với 3 (mod2)
=>81n.3 chia 2 dư 3 hay 34n+1 ko chia hết cho 2
Tương tự 34n+1 cùng ko chia hết cho 5,10
các câu còn lại tương tự
Nếu n chẵn thì cái tổng chia hết cho 2
Nếu n lẻ thì
Phân tích nhân tử
Ta có : \(n^4+4^n=\left(n^2\right)^2+\left(2^n\right)^2+2n^2+2^n=\left(n^2+2^n\right)^2-n^2+2^{n+1}=\left(n^2+2^n-n.2^{\frac{n+1}{2}}\right)\left(n^2+2^n+n.2^{\frac{n+1}{2}}\right)\)
Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được
Tức là ta chứng minh \(n^2+2^n-n.2^{\frac{n+1}{2}}\ge1\)
Tương đương với \(n^2+2^{n+1}-2n.2^{\frac{n+1}{2}}+n^2\ge2\) ( nhân 2 cho 2 vế )
\(BĐT\Rightarrow\left(n-2^{\frac{n+1}{2}}\right)^2+n^2\ge2\)đúng với n lẻ và n ≥ 3
Vậy, ta có điều phải chứng minh
\(3^{8n+2}+2^{12n+3}\)
\(=24^n\cdot9+24^n\cdot8\)
\(=24^n\cdot17⋮17\)
4a=4+4^2+4^3+.......+4^n+1
4a-a=(......)-(......)
3a=4^n+1-1
a=4^n+1-1/3