K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

a3 + b3 + c3 - 3abc

= (a3 + 3a2b + 3ab2 + b3 ) + c3 - 3abc - 3a2b - 3ab2

=[(a+b)3 + c3 ]- (3abc+3a2b+3ab2)

=(a+b+c)[(a+b)2 - (a+b)c + c2 ] - 3ab(c+a+b)

=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2+b2+c2-ab-bc-ca)

4 tháng 9 2023

=(a+b+c)(ab+bc+ca)

NV
14 tháng 9 2021

\(=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)

\(=\left(a+b\right)^3-c^3-3ab\left(a+b-c\right)\)

\(=\left(a+b-c\right)\left[\left(a+b\right)^2+c\left(a+b\right)+c^2\right]-3ab\left(a+b-c\right)\)

\(=\left(a+b-c\right)\left(a^2+b^2+c^2-ab+ac+bc\right)\)

24 tháng 10 2021

a: \(64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)

c: \(125-\left(x+1\right)^3\)

\(=\left(5-x-1\right)\left(25+5x+5+x^2+2x+1\right)\)

\(=\left(4-x\right)\left(x^2+7x+31\right)\)

24 tháng 10 2021

a) \(64x^3-27y^3=\left(4x\right)^3-\left(3y\right)^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)

\(b)\) \(27x^3+\dfrac{y^3}{8}=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)

    \(=\left(3x+\dfrac{y}{2}\right)\left(9x^2-\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\)

\(c)\) \(125-\left(x+1\right)^3=5^3-\left(x+1\right)^3=\left(5-x-1\right)\left(25+5\left(x+1\right)+\left(x+1\right)^2\right)\)

\(=\left(4-x\right)\left(x^2+7x+31\right)\)

26 tháng 8 2017

Ta có

a3+b3+c3-3abc

=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a=b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2+b2+c2-ab-ac-bc)

15 tháng 8 2018

a3+b3+c3-3abc

=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a=b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2+b2+c2-ab-ac-bc)

14 tháng 8 2023

M = (a + b + c)3 - a3 - b3 - c3

= (a + b)3 + c3 + 3(a + b)2c + 3(a + b)c2 - a3 - b3 - c3

= a3 + b3 + c3 + 3a2b + 3ab2 + 3(a + b)c(a + b + c) - a3 - b3 - c3

= 3ab (a + b) + 3c(a + b)(a + b + c)

= 3(a + b)[ab + c(a + b + c)]

= 3(a + b)(ab + bc + ac + c2)

= 3(a + b)[b(a + c) + c(a + c)]

= 3(a + b)(b + c)(c + a)

N = a3 + b3 + c3 - 3abc

= (a + b)3 + c3 - 3ab(a + b) - 3abc

= (a + b + c)3 - 3(a + b)c(a + b + c) - 3ab(a + b + c)

= (a + b + c)[(a + b + c)2 - 3(a + b)c - 3ab]

= (a + b + c)(a2 + b2 + c2 + 2ab + 2bc + 2ca - 2ac - 3bc - 3ab)

= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)\)

3 tháng 8 2021

`(x+y)^3-(x-y)^3`

`=(x+y-x+y)[(x+y)^2+(x+y)(x-y)+(x-y)^2]`

`=2y(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2)`

`=2y(3x^2+y^2)`

\(a^3+a+30\)

\(=a^3+3a^2-3a^2-9a+10a+30\)

\(=\left(a+3\right)\left(a^2-3a+10\right)\)

\(x^3+x^2+100\)

\(=x^3+5x^2-4x^2-20x+20x+100\)

\(=\left(x+5\right)\left(x^2-4x+20\right)\)

23 tháng 1 2022

`a^3 + a - 30`

`= a^3 + 3a^2 - 3a^2 - 9a + 10a + 30`

`= (a + 3)(a^2 - 3a + 10)`

`--------------------`

`x^3 + x^2 + 100`

`= x^3 + 5x^2 - 4x^2 - 20x + 20x +100`

`= (x+5)(x^3 - 4x + 20)`

25 tháng 11 2021

a) x3-10x2+21x
= x3-7x2-3x2+21x
= x2(x-7)-3x(x-7)
= (x2-3x)(x-7)
b) 3x3-7x2-20x
= x(3x2-7x-20)
= x(3x2+5x-12x-20)
= x[x(3x+5)-4(3x+5)]
= x(x-4)(3x+5)

25 tháng 6 2015

 Thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có : 

Biến đổi vế trái thành: 

a^3+b^3+c^3-3abc 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc 

<=>[(a+b)^3 +c^3] -3ab.(a+b+c) 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c) 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)

28 tháng 6 2017

boc vai

NV
3 tháng 1 2024

a.

\(x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b.

\(x^3-9x^2+6x+16=\left(x^3-7x^2-8x\right)-\left(2x^2-14x-16\right)\)

\(=x\left(x^2-7x-8\right)-2\left(x^2-7x-8\right)\)

\(=\left(x-2\right)\left(x^2-7x-8\right)=\left(x-2\right)\left(x^2+x-8x-8\right)\)

\(=\left(x-2\right)\left[x\left(x+1\right)-8\left(x+1\right)\right]=\left(x-2\right)\left(x+1\right)\left(x-8\right)\)

c.

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)

\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)^2-4\left(x^2+7x+10\right)+6\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10-4\right)+6\left(x^2+7x+10-4\right)\)

\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)