giải pt x2+x+2x\(\sqrt{x+3}\)=9-\(\sqrt{x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
\(g'=2\left(\sqrt{x+3}\right)^2.\left(\sqrt{x+3}\right)'=2\left(x+3\right).\dfrac{1}{2\sqrt{x+3}}=\sqrt{x+3}\)
\(g'\left(x\right)+\sqrt{2x-1}=3\Leftrightarrow\sqrt{x+3}+\sqrt{2x-1}=3\)
\(DKXD:x\ge\dfrac{1}{2}\)
\(pt\Leftrightarrow x+3+2x-1+2\sqrt{\left(x+3\right)\left(2x-1\right)}=9\)
\(\Leftrightarrow2\sqrt{\left(x+3\right)\left(2x-1\right)}=7-3x\)
\(\Leftrightarrow4\left(2x^2+5x-3\right)=49-42x+9x^2\)
\(\Leftrightarrow x^2-62x+61=0\Leftrightarrow\left[{}\begin{matrix}x=61\left(loai\right)\\x=1\end{matrix}\right.\)
g'(x) = \(\sqrt{x+3}\)
ta có phương trình : \(\sqrt{x+3}\) + \(\sqrt{2x-1}\) =3 ( ĐK : x\(\ge\)\(\dfrac{1}{2}\))
\(\Leftrightarrow\) x+3 +2x-1 +\(2\sqrt{\left(x+3\right)\left(2x-1\right)}\) = 9
\(\Leftrightarrow\) \(2\sqrt{\left(x+3\right)\left(2x-1\right)}\) = 7-3x
\(\Leftrightarrow\) 4(2x2 +5x -3) = 49 - 42x +9x2
\(\Leftrightarrow\) x2 - 62x +61 = 0 \(\left\{{}\begin{matrix}x=61\\x=1\end{matrix}\right.\)
ĐK: \(x\ge-3\)
Đặt \(t=\sqrt{x+3}\) \(\left(t\ge0\right)\) \(\Rightarrow t^2=x+3\)
\(x^2+2x+\sqrt{x+3}+2x\sqrt{x+3}=9\)
\(x^2+x+\left(x+3\right)+t+2xt=12\)
\(t^2+t\left(2x+1\right)+\left(x^2+x-12\right)=0\)
Goi phương trình trên là phương trình bậc 2 ẩn t
\(\Delta=\left(2x+1\right)^2-4\cdot1\cdot\left(x^2+x-12\right)\)
\(=4x^2+4x+1-4x^2-4x+48=49>0\)
\(\Rightarrow\)Phương trình có hai nghiệm phân biệt
\(t_1=\frac{-2x-1-\sqrt{49}}{2\cdot1}=\frac{-2x-8}{2}=-x-4\)
\(t_2=\frac{-2x-1+\sqrt{49}}{2}=3-x\)
+) \(t=-x-4\)
\(\Rightarrow\sqrt{x+3}=-x-4\)
ĐK : \(x\le-4\)
Bình phương 2 vế \(\Rightarrow x+3=x^2+8x+16\)
\(x^2+7x+13=0\)
\(\Delta=-3< 0\Rightarrow x\in\varnothing\)
+) \(t=3-x\)
\(\Rightarrow\sqrt{x+3}=3-x\)
ĐK : \(x\le3\)
BÌnh phương 2 vế \(\Rightarrow x+3=9-6x+x^2\)
\(x^2+7x-6=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7+\sqrt{73}}{2}\left(tm\right)\\x=\frac{-7-\sqrt{73}}{2}\left(ktm\right)\end{cases}}\)
Vậy \(S=\left\{\frac{-7+\sqrt{73}}{2}\right\}\)
\(2x^2+x+\sqrt{x^2+3}+2x\sqrt{x^2+3}=9\)
\(\Leftrightarrow2x^2+x-3+\left(\sqrt{x^2+3}-2\right)+\left(2x\sqrt{x^2+3}-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2+3-4}{\sqrt{x^2+3}+2}+\frac{4x\left(x^2+3\right)-16}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2-1}{\sqrt{x^2+3}+2}+\frac{4x^3+12x-16}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x-1\right)\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}\right)=0\)
Dễ thấy: \(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}>0\)
Nên x-1=0 suy ra x=1
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)
\(\Leftrightarrow7\left|x-1\right|=35\)
\(\Leftrightarrow\left|x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)
c) ĐKXĐ: \(x\ge0\)
Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
\(\Leftrightarrow x-1=x+\sqrt{x}-6\)
\(\Leftrightarrow\sqrt{x}-6=-1\)
\(\Leftrightarrow\sqrt{x}=5\)
hay x=25(nhận)
x^4 + 2x^3 - 4x^2 - 5x - 6 = 0
<=>x^4 - 2x^3 + 4x^3 - 8x^2 + 4x^2 - 8x + 3x - 6 = 0
<=> x^3(x - 2) + 4x^2(x - 2) + 4x(x - 2) + 3(x - 2) = 0
<=>(x - 2)(x^3 + 4x^2 + 4x + 3) = 0
<=>(x - 2)(x^3 + 3x^2 + x^2 + 3x + x + 3) = 0
<=>(x - 2)[x^2(x + 3) + x(x + 3) + (x + 3)] = 0
<=>(x - 2)(x + 3)(x^2 + x + 1) = 0
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé