Tìm các chữ số x, y để:
a). 123x44y \(⋮\)9 nhưng : 5(dư 2)
b) 71x1y \(⋮\)45
c) 745x \(⋮\)3 \(⋮̸\) 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 3 chia hết choi n + 1
n + 1+ 2 chia hết cho n +1
2 chia hế cho n + 1
n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}
n + 1 = -2 =>? n = -3
n + 1= -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
a) Để số A chia hết cho 2,5 thì b = 0
Tổng các chữ số của số A là :
6 +1 + 4 = 11
Vậy a = 7 để A chia hết cho 2,3,5,9
Thử lại : 67140 chia hết cho 2,5
6 + 7 + 1 + 4 = 18
Mà 18 chia hết cho 3,9 nên số A bằng 67140 là đúng
Giải thích các bước giải:
A= 6a14b
Để A chia hết cho cả 2 và 5 ⇒ D tận cùng là 0
⇒ A= 6a140
Để A chia hết cho cả 3 và 9
⇒ Tổng các chữ số của A chia hết cho 9
hay 6+a+1 + 4 +0 =11 + a chia hết cho 9
=> a = 7
Vậy A = 67140
Để B = 25a1b chia hết cho 15
⇒ B chia hết cho 5 và cho 3
Vì B chia hết cho 5 nhưng k chia hếo 2 nênB tận cùng bằng chữ số 5
Hay B = 25a15
Để B chia hết cho 3 thì 2 + 5 + a + 1 + 5 = 13+a chia hết cho 3
⇒ a ∈ {2;5;8}
Vậy B có thể là 25215; 25515; 25815
a) Để 71x1y chia hết cho 2 và 5 thì y=0
=> Số có dạng 71x10
Tổng các chữ số của nó là: 7+1+x+1+0=9+x
=> Để chia hết cho 3 thì x={0; 3; 6; 9}
=> Số cần tìm là: 71010; 71310; 71610 và 71910}
b) Để số đó chia hết cho 2, 5 và 9 thì y=0
Tổng các chữ số của nó là: 7+1+x+1+0=9+x
=> Để chia hết cho 9 thì x={0; 9}
=> Số cần tìm là: 71010; 71910
c) Ta có: 45=5x9
Để số đó chia hết cho 5 thì y=0 hoặc 5
+/ y=0 => Số có dạng: 71x10 => để chia hết cho 9 thì x=0 hoặc 9 => Số cần tìm là 71010 và 71910
+/ y=5 => Số có dạng: 71x15 => Tổng các chữ số là: x+14 => để chia hết cho 9 thì x=4 => Số cần tìm là 71915
ĐS: 71010 ; 71910 ; 71915
a) Gọi số cần tìm là a \(\left(a\ne1;a>1\right)\)
Theo đề bài ta có: a chia cho 2;3;4;5;6 (dư 1)
=> a - 1 chia hết cho 2;3;4;5;6
Mà a nhỏ nhất => \(a-1\in BCNN\left(2;3;4;5;6\right)=60\)
=> a = 60 + 1 = 61
(Xem lại đề, vì chỗ chia hết cho 7??)
b) Để \(\overline{71x1y}⋮45\Leftrightarrow\) \(\overline{71x1y}⋮9\) và \(5\)
Để \(\overline{71x1y}⋮5\) <=> Có tận cùng là 0 và 5
<=> y = {0;5}
Để \(\overline{71x1y}⋮9\) <=> Tổng các chữ số phải chia hết cho 9
Tức là: 9 + 1 + x + 1 + y phải chia hết cho 9
Nếu y = 0 \(\Rightarrow7+1+x+1+0\) phải chia hết cho 9
=> x = {0;8}
Nếu y = 5 \(\Rightarrow7+1+x+1+5\) phải chia hết cho 9
=> x = 4
Vậy x = {0;8;4} và y = {0;5}
a) Gọi số cần tìm là a
ta có a chia 2,3,4,5,6 đều dư 1 ⇒ a-1 chia hết cho 2,3,4,5,6
⇔a-1 là bội chung của 2,3,4,5,6
a-1= { 60;120;180;240;300;360;420;480;540;600;....}
Mặt khác ta có a chia hết cho 7 và phải là số nhỏ nhất
nếu a-1= 300 thì a=301 là số nhỏ nhât thoa mãn yêu cầu của bài toán
b)Để 71x1y chia hết cho 45 thì 71x1y phải chia hết cho 9 và 5
Để 71x1y chia hết cho 5 thì y bằng 0 hoặc 5
TH1:Nếu y bằng 0 thì:(7 + 1 + x + 1 + 0)chia hết cho 9
( 9 + x ) chia hết cho 9
Vậy nếu y bằng 0 thì x bằng 0 hoặc 9
TH2:Nếu y bằng 5 thì:(7 + 1 + x + 1 + 5) chia hết cho 9
( 14 + x ) chia hết cho 9
Vậy nếu y bằng 5 thì x bằng 4
Bài 1 :
Đặt A = 71x1y
Vì \(A⋮5\)
\(\Rightarrow\)\(y\in\left\{0;5\right\}\)
+) Nếu \(y=0\)ta có : A = 71x10 \(⋮9\)
\(\Rightarrow\) \(\left(7+1+x+1+0\right)⋮9\)
\(\Rightarrow\) \(\left(9+x\right)⋮9\)
Vì x là chữ số \(\Rightarrow\)\(x\in\left\{0;9\right\}\)
+) Nếu \(y=5\)ta có : A = 71x15
\(\Rightarrow\) \(\left(7+1+x+1+5\right)⋮9\)
\(\Rightarrow\) \(\left(14+x\right)⋮9\)
Vì x là chữ số \(\Rightarrow\)\(x=4\)
Vậy ...
Bài 2 :
Vì \(a\in N,a⋮9,2000< a< 2015\)
\(\Rightarrow\)\(a=2007\)
Vậy \(a=2007\)
Bài 3 :
Ta có : 4 x 10100 + 1 = 4 x 100...0 ( 100 chữ số 0 ) + 1
= 400...0 ( 100 chữ số 0 ) + 1
= 400...01 ( 99 chữ số 0 )
Vì 4+0+0+...+0+1 ( 99 chữ số 0 ) = 4+0x99+1 = 5
Mà 5 : 3 (dư 2)
=> 4 x 10100 +1 : 3 (dư 2)
Vậy số dư trong phép chia số 4 x 10100 + 1 cho 3 là 2
Cbht !!! ♡♡♡
a) 123x44y chia cho 5 dư 2
=> tận cùng là 2 hoặc 7
TH1 : Nếu y = 2 <=> 123x442 chia hết cho 9
=> x = 2
TH2 : Nếu y = 7 <=> 123x447 chia hết cho 9
=> x =6