Cho \(A=2+2^2+2^3+...+2^{60}\).
Chứng minh rằng \(A⋮3;A⋮7;A⋮15\)
Đang cần gấp . Ai nhanh mk tik.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}
={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}
=2{1+2}+2^3{1+2}+...+2^59{1+2}
=2.3+2^3.3+.....+2^59.3
=3.(2+2^3+...+2^59)
vi co thua so 3 => tich do chia het cho 3
A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}
={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}
=2{1+2}+2^3{1+2}+...+2^59{1+2}
=2.3+2^3.3+.....+2^59.3
=3.(2+2^3+...+2^59)
vi co thua so 3 => tich do chia het cho 3
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)
\(=3\times91+3^7\times91+...+3^{1987}\times91\)
\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)
\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)
Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.
b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)
\(=3\times820+...+3^{1985}\times820\)
\(=3\times20\times41+...+3^{1985}\times20\times41\)
\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)
Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.
A=2+22+23+...+260
= ( 2+22)+(23+24)+...+(259+260)
= 2. 3 + 23.3+...+259.3
= 3.( 2+23+...+259) chia het cho 3
=> A chia het cho 3
A = (2 +22) + (23+24) + ....... + (259 + 260)
= 2(1+2) + 23(1+2) + ... + 259(1+2)
= 2. 3 + 23 . 3 + .... + 259 x 3
= 3(2 + 23 + .... + 259 ) chia hết cho 3
A = 2 + 2² + 2³ + ... + 2⁶⁰
= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Vậy A ⋮ 3
------
A = 2 + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy A ⋮ 7
--------
A = 2 + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)
= 30.(1 + 2⁴ + ... + 2⁵⁶)
= 5.6.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 5
Vậy A ⋮ 5
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{58}.6\)
\(A=6.\left(1+2^2+...+2^{58}\right)\)
Vì \(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)
Vậy \(A⋮3\)
___________
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)
\(A=14+...+2^{57}.14\)
\(A=14.\left(1+...+2^{57}\right)\)
Vì \(14⋮7\) nên \(14.\left(1+...2^{57}\right)⋮7\)
Vậy \(A⋮7\)
____________
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{56}.30\)
\(A=30.\left(1+...+2^{56}\right)\)
Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)
Vậy \(A⋮7\)
\(#WendyDang\)
2 + 2 ^ 2 + 2 ^ 3 + .... + 2 ^ 60 có 60 số hạng
= ( 2 + 2 ^ 2 ) + ( 2 ^ 3 + 2 ^ 4 ) + .....+ ( 2 ^ 59 + 2 ^ 60 ) có 60 : 2 = 30 cặp
= 2 x ( 1 + 2 ) + 2 ^ 3 x ( 1 + 2 ) + .... + 2 ^ 59 x ( 1 + 2 )
= 2 x 3 + 2 ^3 x 3 + ... + 2^ 59 x 3
= ( 2 + 2 ^ 3 + .... + 2 ^ 59 ) x 3
VÌ 3 chia hết cho 3 nên A chia hết cho 3
7 và 105 tương tự ,chỉ cần nhóm 3 và 7 số lại là xong
Ta có : 2+22+23+...+260
=(2+22)+(23+24)+...+(259+260)
=2*(1+2)+22*(1+2)+...+258*(1+2)
=2*3+22*3+...+258*3
=3*(2+22+..+258)
Vậy số này chia hết cho 3
chia het cho 3 thi cu nhom 2 so hang lien tiep roi dat 2 ra ngoai là duoc
chia het cho 7 thi nhom ba so hang lien tiep roi dat 2 ra ngoai la duoc.
chia het cho 5 thi nhom 4 so hang lien tiep roi dat 2 ra ngoai cung dc.
ma 3,5,7 la cac so nguyen to cung nhau và 3.5.7 = 150
vay A chia het 150.
A = 2+22+23+...+260=(2+22) +(23+24)+...+(259+260)=2(1+2)+22(1+2)+...+259(1+2)=3.2+3.22+...+3.259 chia het cho ba
a. A= 2+22+23+......+260
= 2+ (22+23)+(24+25)+......+(258+259)+260
=2+2(2+22)+23(2+22)+......+257(2+22)+260
=2+(2+22)(2+23......+257)+260
=2+ 6(2+2^3+......+2^57)+260 => cả 23 số hạng đều chia hết cho 2 => tổng chia hết cho 2 => a chia hết cho 2
b. A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+.........+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+......+2^57(1+2+2^2+2^3)
=2.15 +2^5.15+...........+2^57.15 = 15 (2+2^5+...........+2^57) => 15 chia hết cho 3 => A chia hết cho 3
k đúng cho mình nha!!!!
a. Do 2; 22; 23; ...; 260 chia hết cho 2
=> A chia hết cho 2 ( đpcm)
b. A = 2 + 22 + 23 + ... + 260 ( có 60 số; 60 chia hết cho 2)
A = (2 + 22) + (23 + 24) + ... + (259 + 260)
A = 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
A = 2.3 + 23.3 + ... + 259.3
A = 3.(2 + 23 + ... + 259) chia hết cho 3
=> A chia hết cho 3 ( đpcm)
b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{58}\right)⋮13\)
\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)
A = 2 + 22+ 23 + .......... + 260 = ( 2 + 22) + ( 23+ 24) + .... + ( 259+ 260)
A= 2 . ( 2 + 1 ) + 23 . ( 2 + 1 ) + ..... + 259. ( 2 + 1 )
A = 3. ( 2 + 23+ ...... + 259)
\(\Rightarrow A⋮3\)
A = 2 + 22+ 23 + .......... + 260
A = ( 2 + 22+ 23 ) + ( 24+ 25+ 26) + ....... + ( 258+ 259+ 260)
A = 2 . ( 1 + 2 + 22) + 24( 1 + 2 + 22) + ........ + 258( 1 + 2 + 22)
A = 7 . ( 2 + 24 + ....... + 258)
\(\Rightarrow A⋮7\)
A = 2 + 22+ 23+ ........ + 260
A = ( 2 + 22+ 23+ 24) + ( 25+ 26+ 27+ 28) + ........ + ( 257+ 258+ 259+ 260)
A= 2 ( 1 + 2 + 22+ 23) + 25( 1 + 2 + 22 + 23) + ..... + 257( 1 +2 + 22+ 23 )
A = ( 1 + 2 + 22+ 23) . ( 2 + 25 + ........ + 257)
A = 15 ( 2 + 25 + ........ + 257)