cho A = 7+72+73+...+72012
chứng tỏ A chia hết cho 400
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)
A = 7 + 72 + 73 + ... + 7119 + 7120
A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)
A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)
A = 7.57 + 74.57 + ... + 7118.57
A = 57(7 + 74 + ... + 7118)
Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57
\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)
\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)
\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)
\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)
\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)
\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)
Ta có: 5 ⋮ 5
⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm)
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.50 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)
Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$
$=7.57+7^4.57+...+7^{118}.57$
$=57(7+7^4+...+7^{118})\vdots 57$
Ta có đpcm.
A = 7 + 72 + 73 + ... + 7119 + 7120
A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)
A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)
A = 7.57 + 74.57 + ... + 7118.57
A = 57(7 + 74 + ... + 7118)
Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57
bn viết thiếu đề nhé
A= 71 + 72 + 73 + 74 = (71+74)+(72+73) = 145 + 145 = 290 chia hết cho 5
=> A=........ chia hết cho 5
B= 106-57 = 26. 56 - 57 = 56 ( 26 - 5) =(56 . 59) chia hết cho 59 => B chia hết cho 59
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
b: \(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)=5\left(4^{20}+4^{22}\right)⋮5\)
c: \(A=\left(1+4+4^2\right)+...+4^{96}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{96}\right)⋮21\)
d: \(B=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{35}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{35}\right)⋮8\)
\(B=7\left(1+7+7^2\right)+...+7^{34}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{34}\right)\) chia hếtcho 3 và 19
Ta xét biểu thức \(A_1=7+7^2+7^3\) \(=7\left(1+7+7^2\right)\) \(=57.7⋮57\)
\(A_2=7^4+7^5+7^6\) \(=7^4\left(1+7+7^2\right)\) \(=57.7^4⋮57\)
...
\(A_{40}=7^{118}+7^{119}+7^{120}\) \(=7^{118}\left(1+7+7^2\right)⋮57\)
Vậy \(A=\sum\limits^{40}_{i=1}A_i\) đương nhiên chia hết cho 57 (đpcm)