K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

\(A=\frac{1}{x^2+y^2}+\frac{2}{2xy}\ge\frac{\left(1+\sqrt{2}\right)^2}{x^2+y^2+2xy}=\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y\right)^2}=3+2\sqrt{2}\)

Amin =\(3+2\sqrt{2}\) khi  x =y =1/2

22 tháng 2 2018

ta có x>=2y suy ra x-2y>=0

m=x^2/xy+y^2/xy điều kiện x,y khác 0

M=x/y+y/x

2M=2x/y+2y/x

2M=2.x/y+(-x+2y+x)/x

2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x

2m=2(x-2y)/y-(x-2y)/x+5

vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5

2M>=5

2M>5/2

vậy M=5/2

chưa chắc đã đúg đôu đúg tk mk nha

22 tháng 2 2018

Đặt \(\frac{x}{y}=a\)

Vì \(x\ge2y>0\Rightarrow a\ge2\)

Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)

12 tháng 8 2017

Các bất đẳng thức đúng : \(ab\le\frac{\left(a+b\right)^2}{4};\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Áp dụng ta được :

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\)

Ta có :

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

\(\frac{3}{2xy}\ge\frac{3}{2.\frac{\left(x+y\right)^2}{4}}=\frac{3}{2.\frac{1}{4}}=6\)

\(\Rightarrow A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\ge4+6=10\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(A_{min}=10\) tại \(x=y=\frac{1}{2}\)

14 tháng 8 2018

thangwd hdashdfjdfishjdf

2 tháng 12 2016

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)

2 tháng 12 2016

A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)

Áp dụng bđt cauchy là ra bài

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

7 tháng 10 2017

Ta có:

\(\left(x+y+1\right)xy=x^2+y^2\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=\frac{1}{x^2}+\frac{1}{y^2}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)

\(\Leftrightarrow0\le\frac{1}{x}+\frac{1}{y}\le4\)

Ta lại có:

\(\frac{1}{x^3}+\frac{1}{y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x^2}-\frac{1}{xy}+\frac{1}{y^2}\right)=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)

PS: Sửa đề tìm max nhé

2 tháng 5 2022

undefined

17 tháng 5 2016

\(GT\Leftrightarrow x^2+y^2+1+2xy-2x-2y=xy\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2=1-xy\rightarrow xy\le1\)

\(\rightarrow\left(x+y-1\right)^2\le1\Leftrightarrow\left(x+y-2\right)\left(x+y\right)\le0\rightarrow x+y\le2\)

\(\text{Ta có:}P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}=\frac{1}{2xy}+\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{\left(x+y\right)\sqrt{xy}}{\left(x+y\right)^2}\)

\(\ge\frac{1}{2xy}+\frac{4}{\left(x+y\right)^2}+\frac{2xy}{\left(x+y\right)^2}=\left(\frac{1}{2xy}+\frac{2xy}{\left(x+y\right)^2}\right)+\frac{4}{\left(x+y\right)^2}\)


\(\ge\frac{2}{x+y}+\frac{4}{\left(x+y\right)^2}\ge\frac{2}{2}+\frac{4}{2^2}=2\)

Vậy MinP=2 <=>x=y=1

17 tháng 5 2016

ra 1 nhé