CMR
\(3^{2n+3}+2^{n+3}+3^{n+1}+2^{n+2}⋮6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)
Với \(n=k+1\)
\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)
Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)
Theo pp quy nạp ta được đpcm
\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)
Với \(n=k+1\)
\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)
Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)
Theo pp quy nạp ta được đpcm
\(1,\)
\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)
Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)
\(d,D=1^n+2^n+5^n+8^n\)
Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)
Bài 1.
2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2nn + 6n
= 6n \(⋮6\forall n\inℤ\)( đpcm )
Bài 2.
P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18
P = m3 + 8 - m3 + m2 - 9 - m2 - 18
P = 8 - 9 - 18 = -19
=> P không phụ thuộc vào biến M ( đpcm )
ta có
\(2n^2\left(n+1\right)-2n^2\left(n^2+n-3\right)=2n^2\left(4-n^2\right)=2n^2\left(2-n\right)\left(2+n\right)\)
nhận thấy \(n-2,n,n+2\)là ba số chẵn liên tiếp hoặc 3 số lẻ liên tiếp
do đó tích \(n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 3 với mọi n}\)
hay \(2n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 6 với mọi n}\)
Đặt \(P\left(n\right)=3.7^{2n+1}+6.2^{2n+2}\)
Ta thấy \(P\left(0\right)=45⋮45\), luôn đúng.
Giả sử khẳng định đúng đến \(n=k\), khi đó \(P\left(k\right)=3.7^{2k+1}+6.2^{2n+2}⋮45\). Ta cần chứng minh khẳng định đúng với \(n=k+1\). Thật vậy:
\(P\left(k+1\right)=3.7^{2\left(k+1\right)+1}+6.2^{2\left(k+1\right)+2}\)
\(=3.7^{2k+3}+6.2^{2k+4}\)
\(=49.3.7^{2k+1}+4.6.2^{2k+2}\)
\(=4\left(3.7^{2k+1}+6.2^{2k+2}\right)+45.3.7^{2k+1}\)
Hiển nhiên \(45.3.7^{2k+1}⋮45\). Lại có \(4\left(3.7^{2k+1}+6.2^{2k+2}\right)\) theo giả thiết quy nạp nên suy ra \(P\left(k+1\right)⋮45\), suy ra khẳng định đúng với mọi \(n\inℕ\). Ta có đpcm
1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh
2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.
3n+2-2n+2+3n-2n
= ( 3n+2+3n)-(2n+2+2n)
= 3n(32+1)-2n(22+1)
= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10
b) 7n+4-7n=7n(74-1)=7n.2400
Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30
Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N
c) 62n+3n+2+3n=22n.3n+3n(32+1)
=22n.32n+3n.11 chia het cho 11
đ) câu hỏi tương tự nhé
l-i-k-e mình nhé
\(3^{2n+3}+2^{n+3}+3^{n+1}+2^{n+2}=3^{2n}.3^3+2^n.2^3+3^n.3+2^n+2^2\)
\(=3^{2n}\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^{2n}.30+2^n.12\)
Mà: \(\hept{\begin{cases}3^{2n}.30⋮6\\2^n.12⋮6\end{cases}\Rightarrow}3^{2n}.30+2^n.12⋮6\Rightarrowđpcm\)
\(3^{2n+3}+2^{n+3}+3^{2n+1}+2^{n+2}.\)( da sua lai )
\(=\left(3^{2n+3}+3^{2n+1}\right)+\left(2^{n+3}+2^{n+2}\right)\)
\(=\left(3^{2n}\cdot3^3+3^{2n}\cdot3\right)+\left(2^n\cdot2^3+2^n\cdot2^2\right)\)
\(=\left[3^{2n}\cdot\left(3^3+3\right)\right]+\left[2^n\cdot\left(2^3+2^2\right)\right]\)
\(=3^n\cdot30+2^n\cdot12\)
\(\hept{\begin{cases}30⋮6\Rightarrow3^n\cdot30⋮6\\12⋮6\Rightarrow2^n\cdot12⋮6\end{cases}\Rightarrow3^n\cdot30+2^n\cdot12⋮}6\)
\(\text{Hay}\) \(3^{2n+3}+2^{n+3}+3^{2n+1}+2^{n+2}⋮6\left(dpcm\right)\)