Bài 1
Tìm GTNN của
B= | 3x - 5 | + | 2 - 3x |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+4y^2+4xy-3x-1\)
\(=\left(x^2+4xy+2y^2\right)+\left(x^2-3x-1\right)\)
\(=\left(x+2y\right)^2+\left(x-\dfrac{3}{2}\right)^2-\dfrac{13}{4}\)
Ta có \(\left(x+2y\right)^2+\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2y\right)^2+\left(x-\dfrac{3}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\forall x\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{3}{2}=0\\x+2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy GTNN của biểu thức là \(-\dfrac{13}{4}\) khi \(x=\dfrac{3}{2}\) và \(y=-\dfrac{3}{4}\)
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
\(\Rightarrow x^3+3x^2+3x+1=0\\ \Rightarrow\left(x+1\right)^3=0\Rightarrow x+1=0\Rightarrow x=-1\)
\(\left(x-2\right)\left(x^2+2x+4\right)+3x-4=\left(x+2\right)\left(x^2-2x+4\right)-x+1\)
\(\Rightarrow\left(x^3-8\right)+3x-4=\left(x^3+8\right)-x+1\)
\(\Rightarrow x^3-8+3x-4=x^3+8-x+1\)
\(\Rightarrow x^3-x^3+3x+x=8+8+4+1\)
\(\Rightarrow4x=21\)
\(\Rightarrow x=\dfrac{21}{5}\)
B=−13+|2,34−3x|B=-13+|2,34-3x|
Ta có: |2,34−3x|≥0|2,34-3x|≥0 với ∀x∀x
⇒−13+|2,34−3x|≥−13⇒-13+|2,34-3x|≥-13 với ∀x∀x
⇒B≥−13⇒B≥-13 với ∀x∀x
Dấu "==" xảy ra khi:
⇔|2,34−3x|=0⇔|2,34-3x|=0
⇔2,34−3x=0⇔2,34-3x=0
⇔3x=2,34⇔3x=2,34
⇔3x=11750⇔3x=11750
⇔x=11750:3⇔x=11750:3
⇔x=11750.13⇔x=11750.13
⇔x=3950⇔x=3950
Vậy AA đạt GTNGTNNN là −13-13 khi x=3950
Ta có:
\(\hept{\begin{cases}\left|3x-5\right|=\left|5-3x\right|\ge5-3x\\\left|2-3x\right|=\left|3x-2\right|\ge3x-2\end{cases}}\)
\(\Rightarrow\left|5-3x\right|+\left|3x-2\right|\ge\left(5-3x\right)+\left(3x-2\right)\)
\(\Rightarrow\left|3x-5\right|+\left|2-3x\right|\ge3\)
\(\Rightarrow B\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}5-3x\ge0\\3x-2\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x\le5\\3x\ge2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le\frac{5}{3}\\x\ge\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\frac{2}{3}\le x\le\frac{5}{3}\)
Vậy MinB = 3 \(\Leftrightarrow\frac{2}{3}\le x\le\frac{5}{3}\)