\(\left(x^2+6x+5\right).\left(x^2+10x+21\right)+15\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+6x+15\right)\left(x^2+10x+21\right)+15=\left(x+5\right)\left(x+1\right)\left(x+3\right)\left(x+7\right)+15=\left(x+5\right)\left(x+3\right)\left(x+1\right)\left(x+7\right)+15=\left(x^2+8x+15\right)\left(x^2+8x+7\right)+15\)
Đặt \(x^2+8x+7=a\)
Khi đó pt thành \(a\left(a+8\right)+15=a^2+8a+15=\left(a+3\right)\left(a+5\right)\)
Do đó: \(\left(x^2+6x+5\right)\left(x^2+10x+21\right)+15=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
Đặt \(x^2-6x+15=a,2x=b\)
\(PT\Leftrightarrow\left(a-2b\right)\left(a-3b\right)=2ab\)
\(\Leftrightarrow a^2-7ab+6b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}}\)
Đến đây đơn giản rồi nhé :))))
cái này gọi là pt đa thức thành nt, mắc máy lag ko làm dc
a)Đặt t=x^2+4x-3
b)
(x+2)(x+6)(x2+8x+10)
`a)(2x^2-5x+3)(x^2-4x+3)=0`
`<=>[(2x^2-5x+3=0),(x^2-4x+3=0):}<=>[(x=3/2),(x=1),(x=3):}`
`=>A={3/2;1;3}`
`b)(x^2-10x+21)(x^3-x)=0`
`<=>[(x^2-10x+21=0),(x^3-x=0):}<=>[(x=7),(x=3),(x=0),(x=+-1):}`
`=>B={0;+-1;3;7}`
`c)(6x^2-7x+1)(x^2-5x+6)=0`
`<=>[(6x^2-7x+1=0),(x^2-5x+6=0):}<=>[(x=1),(x=1/6),(x=2),(x=3):}`
`=>C={1;1/6;2;3}`
`d)2x^2-5x+3=0<=>[(x=1),(x=3/2):}` Mà `x in Z`
`=>D={1}`
`e){(x+3 < 4+2x),(5x-3 < 4x-1):}<=>{(x > -1),(x < 2):}<=>-1 < x < 2`
Mà `x in N`
`=>E={0;1}`
`f)|x+2| <= 1<=>-1 <= x+2 <= 1<=>-3 <= x <= -1`
Mà `x in Z`
`=>F={-3;-2;-1}`
`g)x < 5` Mà `x in N`
`=>G={0;1;2;3;4}`
`h)x^2+x+3=0` (Vô nghiệm)
`=>H=\emptyset`.
B: rút gọn
a) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-6x^2+12x\)
\(=x^3-6x^2+12x-8\)
\(=\left(x-2\right)^3\)
b) Ta có: \(\left(2x+5\right)\left(5-2x\right)+\left(x-5\right)\left(4x+5\right)\)
\(=25-4x^2+4x^2+5x-20x-25\)
=-15x
\(A=\left(x^2+6x+5\right)\left(x^2+10x+21\right)+15\)
\(=\left[x\left(x+1\right)+5\left(x+1\right)\right].\left[x\left(x+3\right)+7\left(x+3\right)\right]+15\)
\(=\left(x+1\right)\left(x+5\right)\left(x+3\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right].\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+11=a\)
Ta có:
\(A=\left(a-4\right)\left(a+4\right)+15\)
\(=a^2-1=\left(a-1\right)\left(a+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+2\right)+6\left(x+2\right)\right]=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)
Chúc bạn học tốt.