K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2019

\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\sqrt[3]{\left(1-\sqrt{3}\right)\left(\sqrt{3}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{3}\right)^3}\)=1-\(\sqrt{3}\)

\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}=\sqrt[3]{\left(1-\sqrt{5}\right)\left(\sqrt{5}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=1-\(\sqrt{5}\)

Ta thấy \(\sqrt{5}>\sqrt{3}\)nên 1-\(\sqrt{3}\)>\(1-\sqrt{5}\)

Vậy \(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}\)>\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)

18 tháng 7 2016

\(tacó:...\frac{1}{3.\left(\sqrt{1}+\sqrt{2}\right)}>\frac{1}{3.2}=\frac{1}{\left(1+2.1\right).2.1}\) 

\(\frac{1}{5.\left(\sqrt{2}+\sqrt{3}\right)}>\frac{1}{5.4}=\frac{1}{\left(1+2.2\right).2.2}\) 

\(\frac{1}{7.\left(\sqrt{3}+\sqrt{4}\right)}>\frac{1}{7.6}=\frac{1}{\left(1+2..3\right).2.3}\) 

....

\(\frac{1}{49.\left(\sqrt{48}+\sqrt{49}\right)}>\frac{1}{49.48}=\frac{1}{\left(1+2.48\right).2.48}\) 

cộng vế theo vế ta đươc S =\(\frac{1}{\left(1+2.1\right).2}+\frac{1}{\left(1+2.2\right).2.2}+...+\frac{1}{\left(1+2.48\right).48.2}\)

\(=\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{10}+\frac{1}{21}+\frac{1}{36}+...+\frac{1}{4656}\right)\)  <  \(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{4656}\right)\)

mà lại có : \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+..+\frac{1}{4656}\) 

=> \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9312}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{96.97}\) 

             = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{97}=\frac{1}{2}-\frac{1}{97}=\frac{95}{194}\)  

vậy S < \(\frac{95}{194}\) 

mà \(\frac{95}{194}< \frac{3}{7}\) 

=> S < \(\frac{3}{7}\)

KẾT LUẬN  : S <\(\frac{3}{7}\)

 

 

10 tháng 8 2023

2/ 

a) Ta có:

\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)

Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

b) Ta có:

\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)

\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)

Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)

10 tháng 8 2023

3/

a)ĐKXĐ: \(x\ne1;x\ge0\)

b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)

\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)

\(A=1^2-\left(\sqrt{x}\right)^2\)

\(A=1-x\)

25 tháng 9 2021

\(1,=20-7=13\\ b,=12-50=-38\\ c,=\sqrt{7}-2+\sqrt{7}+2=2\sqrt{7}\\ d,=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\\ e,=11+2\sqrt{30}\\ f,=8-2\sqrt{15}\\ g,=11+2\sqrt{6}\)

25 tháng 9 2021

1) \(=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)

2) \(=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)

3) \(=\sqrt{7}-2+\sqrt{7}+2=2\sqrt[]{7}\)

4) \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)

5) \(=5+6-2\sqrt{5.6}=11-2\sqrt{30}\)

6) \(=3+5-2\sqrt{3.5}=8-4\sqrt{2}\)

7) \(=\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+2\sqrt{2\sqrt{2}.3}=11+2\sqrt{6\sqrt{2}}\)

13 tháng 8 2020

Xét phân số tổng quát là: 

\(A=\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{1\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}\)

=>    \(A< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n}.\sqrt{n+1}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Thay từng số 1; 2; ....;  48 vào phân số tổng quát A

=>   \(S< \frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)

=>   \(S< \frac{1}{2}\left(1-\frac{1}{7}\right)=\frac{1}{2}.\left(\frac{6}{7}\right)=\frac{3}{7}\)

VẬY    \(S< \frac{3}{7}\)

27 tháng 6 2021

\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)

\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

\(C=\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)

27 tháng 6 2021

\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)

\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}\)

C=\(\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)

4 tháng 9 2023

\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\\ =\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\\ =-2+\sqrt{2}\)

\(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)}\\ =\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\\ =2\sqrt{2}-\sqrt{7}+3-2\sqrt{2}\\ =3-\sqrt{7}\)

\(\sqrt{\left(x-3\right)^2}\\ =\left|x-3\right|\\ =x-3\left(vì.x>3\right)\)

\(\sqrt{\left(1-x\right)^2}\\ =\left|1-x\right|\\ =x-1\left(vì.x>1\right)\)

\(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}\\ =\left|3a^2\right|\\ =3a^2\)

\(\sqrt{100a^2}\\ =\sqrt{\left(10a\right)^2}\\ =\left|10a\right|\\ =-10a\left(vì.a< 0\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2023

Lời giải:

a. $=|2-\sqrt{5}|+|2\sqrt{2}-\sqrt{5}|$

$=(\sqrt{5}-2)+(2\sqrt{2}-\sqrt{5})=-2+2\sqrt{2}$
b. $=|\sqrt{7}-2\sqrt{2}|+|3-2\sqrt{2}|=2\sqrt{2}-\sqrt{7}+(3-2\sqrt{2})$

$=3-\sqrt{7}$

c.

$=|x-3|=x-3$
d.

$=|1-x|=x-1$

$=\sqrt{(3a^2)^2}=|3a^2|=3a^2$
e.

$=\sqrt{(10a)^2}=|10a|=-10a$