a2-ab+a-b
m4-n6
x2+6x+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
\(\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a^3+b^3\right)\)
\(=a^3-b^3-a^3-b^3\)
\(=-2b^3\)
Câu 2:
a: \(x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
=>x-3=0
hay x=3
b: \(x^2-\dfrac{2}{5}x+\dfrac{1}{25}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{1}{5}+\dfrac{1}{25}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{5}\right)^2=0\)
=>x-1/5=0
hay x=1/5
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)
b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)
f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)
g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)
i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)
a: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(x+1\right)\left(3x-10\right)\)
b: \(x^2+6x+9-4y^2\)
\(=\left(x+3\right)^2-4y^2\)
\(=\left(x+3-2y\right)\left(x+3+2y\right)\)
c: \(x^2-2xy+y^2-5x+5y\)
\(=\left(x-y\right)^2-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-5\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^2+b^2\ge2ab\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)
\(\Rightarrow4=a^2+b^2-ab\ge a^2+b^2-\dfrac{a^2+b^2}{2}=\dfrac{a^2+b^2}{2}\)
\(\Rightarrow a^2+b^2\le8\)
\(a^2+b^2\ge-2ab\Rightarrow-ab\le\dfrac{a^2+b^2}{2}\)
\(\Rightarrow4=a^2+b^2-ab\le a^2+b^2+\dfrac{a^2+b^2}{2}=\dfrac{3\left(a^2+b^2\right)}{2}\)
\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\)
\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\le4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.
b) N = 8 a 3 - 27 b 3 = ( 2 a ) 3 - ( 3 b ) 3 = ( 2 a - 3 b ) 3 + 3.2a.3b.(2a - 3b)
Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.
c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.
Thực hiện rút gọn K, ta có kết quả K = 1.
Cách 2: Tìm cách đưa biêu thức về dạng a + b.
a 3 + b 3 = ( a + b ) 3 – 3ab(a + b) = 1 - 3ab;
6 a 2 b 2 (a + b) = 6 a 2 b 2 kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2 + 2ab + b 2 ) = 3ab.
Thực hiện rút gọn K = 1.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét: Δ′=32−(6a−a2)=a2−6a+9=(a−3)2≥0Δ′=32−(6a−a2)=a2−6a+9=(a−3)2≥0 với mọi a
=> phương trình luôn có hai nghiệm:
Theo định lí viet: \hept{x1+x2=−6(1)x1x2=6a−a2(2)\hept{x1+x2=−6(1)x1x2=6a−a2(2)
Ta có: x2=x31−8x1x2=x13−8x1thế vào (1)
<=> x31−8x1+x1=−6x13−8x1+x1=−6
<=> x31−7x1+6=0x13−7x1+6=0
<=> x1 = 1 hoặc x1 = 2 hoặc x1 =-3
Với x1=1x1=1ta có: x2=−7x2=−7 thế vào (2): −7=6a−a2⇔\orbr{a=7a=−1−7=6a−a2⇔\orbr{a=7a=−1
Với x1=2x1=2ta có: x2=−8x2=−8 thế vào (2): −16=6a−a2⇔\orbr{a=8a=−2−16=6a−a2⇔\orbr{a=8a=−2
Với x1=−3x1=−3ta có: x2=−3x2=−3 thế vào (2): 9=6a−a2⇔a=39=6a−a2⇔a=3
Vậy có 5 giá trị a thỏa mãn là:...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^2-9+6x-x^2=a^2-\left(x^2-6x+9\right)=a^2-\left(x-3\right)^2=\left(a-x+3\right)\left(a+x-3\right)\)
a 2 − 9 + 6 x − x 2
= a 2 − ( x 2 − 6 x + 9 )
= a 2 − ( x − 3 ) 2
= ( a − x + 3 ) ( a + x − 3 )
nha ban :3
ko bit =)