K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

1. (A+B)2 = A2+2AB+B2

2. (A – B)2= A2 – 2AB+ B2

3. A– B2= (A-B)(A+B)

4. (A+B)3= A3+3A2B +3AB2+B3

5. (A – B)3 = A3- 3A2B+ 3AB2- B3

6. A+ B3= (A+B)(A2- AB +B2)

7. A3- B3= (A- B)(A2+ AB+ B2)

8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

10 tháng 10 2018

Giông bn triphai Tyte

10 tháng 10 2018
  1. Bình phương của một tổng:

    {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

  2. Bình phương của một hiệu:

    {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

  3. Hiệu hai bình phương:

    {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

  4. Lập phương của một tổng:

    {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

  5. Lập phương của một hiệu:

    {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

  6. Tổng hai lập phương:

    {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

  7. Hiệu hai lập phương:

    {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

Các hệ thức liên quan

  1. {\displaystyle (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\,}
  2. {\displaystyle a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)\,}
  3. {\displaystyle (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab+2bc-2ca\,}
  4. {\displaystyle (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\,}
  5. {\displaystyle (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2ab-2bc-2ca\,}
10 tháng 10 2018

cương khùng 

snvv 

1 tháng 8 2017

1+1=2

Tk mình nha mình dag bị âm diem

2 tháng 8 2019

a, 81 - y2 = 92 - y2 = ( 9 - y ).( 9 + y )

b, ( x - 3y )3 = x3 - 3x2.3y + 3x.( 3y )2 - ( 3y )3 = x3 - 9x2y + 27xy2 - 27y3

c, ( 2x + 2 )3 = ( 2x )3 + 3.( 2x )2.2 + 3.2x.22 + 23 = 8x3 + 24x2 + 24x + 8

10 tháng 8 2019

a, 81 - y2  = 92  - y2  = ( 9 - y ).( 9 + y )

b, ( x - 3y )3  = x3  - 3x2 .3y + 3x.( 3y )2  - ( 3y )3  = x3  - 9x2y + 27xy2  - 27y3

c, ( 2x + 2 )3  = ( 2x )3  + 3.( 2x )2 .2 + 3.2x.22  + 23  = 8x3  + 24x2  + 24x + 8

ok thế là xong

31 tháng 7 2018

lam nhieu len la len bang xep hang lien

31 tháng 7 2018

Bạn phải trả lời thật nhiều câu hỏi, tổng điểm của bạn cao ( > 2000 )Thì bạn mới được lưu tên trong bảng xếp hạng nhé!

.............  Mik chúc bạn nhanh chóng được lưu tên trong bảng xếp hạng nha!  ..............

lưu tên trong bảng xếp hạng Mik cx đang cố gắng đây )

2 tháng 9 2017

12345+54321=66666

2 tháng 9 2017

12345+54321=66666

17 tháng 10 2023

\(x^2-x=x\left(x-1\right)\)

30 tháng 7 2019

a, \(\left(2x-1\right)^2=\left(2x\right)^2-2.2x.1+1^2=4x^2-4x+1\) 1 

b, \(\left(3x+1\right)^2=\left(3x\right)^2+2.3x.1+1^2\) \(=9x^2+6x+1\)

c, \(\left(\frac{1}{2}x+1\right)^3\) = \(\left(\frac{1}{2}x\right)^3+3.\left(\frac{1}{2}x\right)^2.1+3.\frac{1}{2}x.1^2+1^3\)

\(\frac{1}{8}x^3+\frac{3}{4}x^2+\frac{3}{2}x+1\)

d, \(-x^2+100\) = \(x^2+10^2\)

23 tháng 10 2017
  1. Bình phương của một tổng:
    {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}
  2. Bình phương của một hiệu:
    {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}
  3. Hiệu hai bình phương:
    {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}
  4. Lập phương của một tổng:
    {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}
  5. Lập phương của một hiệu:
    {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}
  6. Tổng hai lập phương:
    {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}
  7. Hiệu hai lập phương:
    {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}
     
    cach-hoc-bang-cuu-chuong-moi
    Despacito!
23 tháng 10 2017

(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

a^2-b^2=(a-b)(a+b)

(a+b)^3=a^3+3a^2b+3ab^2+b^3

(a-b)^3=a^3-3a^2b+3ab^2-b^3

a^3+b^3=(a+b)(a^2-ab+b^2)

a^3-b^3=(a-b)(a^2+ab+b^2)

CHUC BN HOC TOT -^-