cho tỉ lệ thức: a/b=c/d
Chứng minh:a-b/b=c-d/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vi ab = cd
=>a/b=c/d
=>a+c/b+d =a/b = c/d
=>a-c/b-d =a/b = c/d
(sgk s8 )
Ta có:
\(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(1\right).\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\left(2\right).\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right).\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+c}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số bằng nhau )
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{b}-1=\frac{c}{d}-1=>\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
=>\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Ta có\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)
Ta có : \(\frac{c}{d}=\frac{a}{b}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\)\(\frac{a-b}{b}=\frac{c-d}{d}\) ( Đpcm)
****
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dya4 tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\left(đpcm\right)\)
ab =cd
⇒ac =bd
Áp dụng tính chất dãy tỉ số bằng nhau:
ac =bd =a−bc−d
⇒ac =a−bc−d ⇒a−ba =c−dc (đpcm)
d) a/b = c/d => ad = bc => b/a = d/c
=>b/a - 1 = d/c - 1
b/a - a/a = d/c - c/c
(b - a)/b = (d - c)/c
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=>\(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
Vậy ta có đpcm
có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}=\frac{a-b}{c-d}=>\frac{c-d}{c}=\frac{a-b}{a}\)
Ta có:
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)