K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

để \(\frac{3n+5}{n+1}\)là phân số thì 3n+5\(⋮n+1\)

\(\Rightarrow3n+5=3\left(n+1\right)+2⋮n+1\)

\(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\Rightarrow n+1\inƯ\left(2\right)\)

=>\(n+1\in\left\{-1;-2;1;2\right\}\)

n+1-1-212
n-2-301
kết luậnloạiloạithỏa mãnthỏa mãn

vậy...

8 tháng 7 2017

\(3n+5⋮n+1\)

<=> 3(n+1) + 2 chia hết cho n+1

=>2 chia hết cho n+1

=> n+1 bằng 1 hoặc bằng 2

=> n=0 hoặc n=1

25 tháng 7 2018

Ta có : \(A=\frac{3n-5}{n+4}\)

\(A=\frac{3\left(n+4\right)-17}{n+4}\)

\(A=3-\frac{17}{n+4}\)

Để  \(A\in Z\)thì  \(17⋮n+4\) \(\Rightarrow n+4\inƯ_{\left(17\right)}=\left\{\pm1;\pm17\right\}\)

Ta có bảng sau : 

n+41-117-17
n-3-513-21

Vậy ....

giải tạp :))) tk đêyyyyyyy

25 tháng 7 2018

Để \(A\in Z\)

\(\Leftrightarrow\frac{3n-5}{n+4}\in Z\)

\(\Leftrightarrow3n-5⋮n+4\)

\(\Leftrightarrow3n+12-17⋮n+4\)

\(\Leftrightarrow3\left(n+4\right)-17⋮n+4\)

\(\Leftrightarrow17⋮n+4\)

Mà \(n\in N\Rightarrow n\ge0\)

\(\Rightarrow n+4\ge4\)

\(\Rightarrow n+4=17\)

\(\Rightarrow n=13\)

Vậy \(n=13\Leftrightarrow A\in Z\)

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

ghi cho ro rang 1 chut ko hiu de

6 tháng 7 2016

\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)

Để p/s A có giá trị nguyên thì 3 chia hết cho n+4

=>n+4 E Ư(3)={-3;-1;1;3}

=>n E {-7;-5;-3;-1}

Vậy........

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B là số nguyên thì 8 chia hết cho 2n-1

Tới đây tương tự câu trên nhé

6 tháng 7 2016

Để A nguyên thì 3n - 9 chia hết n - 4

<=>  (3n - 12) + 3 chia hết n - 4

=>    3.(n - 4) + 3 chia hết n - 4

=>       3 chia hết n - 4

=>        n - 4 thuộc Ư(3)

=>       Ư(3) = {-1;1;-3;3}
Ta có: 

n - 4-11-33
n3517