Tìm GTLN của biểu thức E = 5 - 3 ( x + 1 )2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
1) \(B=-7x^2+9\)
Do \(x^2\ge0\forall x\Rightarrow-7x^2\le0\forall x\)
\(\Rightarrow B=-7x^2+9\le9\)
\(maxB=9\Leftrightarrow x=0\)
2) \(C=2-\left(3x-4\right)^4\)
Do \(\left(3x-4\right)^4\ge0\forall x\Rightarrow-\left(3x-4\right)^4\le0\forall x\)
\(\Rightarrow C=2-\left(3x-4\right)^4\le2\)
\(maxC=2\Leftrightarrow x=\dfrac{4}{3}\)
3) \(D=\dfrac{1}{2}x^2+3\)
Do \(\dfrac{1}{2}x^2\ge0\forall x\Rightarrow D=\dfrac{1}{2}x^2+3\ge3\)
\(minD=3\Leftrightarrow x=0\)
4) \(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{-x^2+5}\)
Do \(x^2\ge0\forall x\Rightarrow-x^2+5\le5\forall x\)
\(\Rightarrow E=\dfrac{2016}{-x^2+5}\ge\dfrac{2016}{5}\)
\(minE=\dfrac{2016}{5}\Leftrightarrow x=0\)
\(B=-7x^2+9\)
Vì \(-7x^2\le0\forall x\)
\(\Rightarrow-7x^2+9\le9\forall x\)
\(\Rightarrow B_{max}=9\Leftrightarrow-7x^2=0\Leftrightarrow x=0\)
\(C=2-\left(3x-4\right)^4\)
Vì \(-\left(3x-4\right)^4\le0\forall x\)
\(\Rightarrow-\left(3x-4\right)^4+2\le2\forall x\)
\(\Rightarrow C_{max}=2\Leftrightarrow-\left(3x-4\right)^4=0\Leftrightarrow x=\dfrac{4}{3}\)
Nếu tìm GTLN thì câu \(d\) là \(D=-\dfrac{1}{2}x^2+3\)
Vì \(-\dfrac{1}{2}x^2\le0\forall x\)
\(\Rightarrow-\dfrac{1}{2}x^2+3\le3\forall x\)
\(\Rightarrow D_{max}=3\Leftrightarrow-\dfrac{1}{2}x^2=0\Leftrightarrow x=0\)
\(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{5-x^2}\)
Vì \(x^2\ge0\forall x\)
\(\Rightarrow5-x^2\le5\forall x\)
\(\Rightarrow E_{min}=5\Leftrightarrow x=\dfrac{2016}{5}\)
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)
Dấu ''='' xảy ra khi x = -1/2
Vậy GTLN của Q là 2021 khi x = -1/2
\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN của C là 2 khi x = 2
\(E=5-3\left(x+1\right)^2\le5\forall x\) ( tự suy luận mũ chẵn )
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy maxE = 5 <=> x = -1