A=\(x^2\)- 4x+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Sửa đề: \(a^2x+a^2y-7x-7y\)
\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)
b) \(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(c,Sửa:x^2-2x+2y-y^2=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\\ d,=\left(4x^4+36x^2+81\right)-36x^2\\ =\left(2x^2+9\right)^2-36x^2=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\\ e,=x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x^2+x-x+1\\ =x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
A=\(x^2+4x+7\)
=\(x^2+4x+4+3\)
=\(\left(x+2\right)^2+3\)
Do (x+2)2\(\ge0\)\(\Rightarrow\left(x+2\right)^2\ge3\)
Dấu ''='' xảy ra khi
\(x+2=0\Rightarrow x=-2\)
Vậy GTNN của A là A=3 tại x=-2
B=\(x^2+4x-7\)
=\(\left(x^2+4x+4\right)-11\)
=\(\left(x+2\right)^2-11\)
Do (x+2)2\(\ge0\Rightarrow\left(x+2\right)^2-11\ge-11\)
Dấu''='' xảy ra khi
\(x+2=0\Rightarrow x=-2\)
Vậy GTNN Của B là B=-11 với x=-2
b) M=\(7-4x-x^2\)
=\(-\left(7+4x+x^2\right)\)
=\(-\left(3+\left(x+2\right)^2\right)\)
=-\(\left(x+2\right)^2-3\)
Do \(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\Rightarrow-\left(x+2\right)^2-3\le-3\)
Dấu = xảy ra khi
\(x+2=0\Rightarrow x=2\)
Vậy GTNN Của M là M min =-3 tại x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
c: Ta có: \(x^3+3x^2+3x-7=0\)
\(\Leftrightarrow x+1=2\)
hay x=1
b: Ta có: \(x\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A\left(x\right)=-4x^5-x^3+4x^2+5x+7+4x^5-6x^2\)
\(=\left(-4x^5+4x^5\right)+\left(-x^3\right)+\left(4x^2-6x^2\right)+5x+7\)
\(=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)
\(B\left(x\right)=-3x^4-4x^3+10x^2-8x+5x^3-7-8x\)
\(=-3x^4+\left(-4x^3+5x^3\right)+10x^2+\left[-8x+\left(-8x\right)\right]+\left(-7\right)\)
\(=-3x^4+x^3+10x^2+\left(-16x\right)+\left(-7\right)\)
b) \(A\left(x\right)=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)
\(B\left(x\right)=x^3+10x^2+\left(-16x\right)+\left(-7\right)+\left(-3x^4\right)\)
\(P\left(x\right)=A\left(x\right)+B\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)\)
\(Q\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-2x^3\right)+\left(-12x^2\right)+21x+14\)
c) Đặt \(P\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)=0\)
Thay x=-1 vào đa thức trên, ta có: \(8.\left(-1\right)^2+\left[-11.\left(-1\right)\right]+\left[-3.\left(-1\right)^4\right]=0\)
\(\Rightarrow8+11+\left(-3\right)=0\Rightarrow16=0\)(vô lí)
Vậy -1 không là nghiệm của đa thức P(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)
=x2-2x+1-8x+4x2-6+3x=5x2-7x-6
b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y
c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)
đề bài? bạn ơi