K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2020

\(\overrightarrow{AB}=\left(-a;b\right)\) ; \(\overrightarrow{MA}=\left(a-2;-1\right)\)

ABM thẳng hàng \(\Rightarrow b\left(a-2\right)=a\Rightarrow b=\frac{a}{a-2}\)

Do \(b>0\Rightarrow a>2\)

a/ \(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}ab=\frac{1}{2}.\frac{a^2}{a-2}=\frac{1}{2}\left(a-2+\frac{4}{a-2}+4\right)\ge\frac{1}{2}\left(2\sqrt{\frac{4\left(a-2\right)}{a-2}}+2\right)=3\)

Dấu "=" xảy ra khi \(\left(a-2\right)^2=4\Rightarrow a=4\Rightarrow b=2\)

\(\Rightarrow A\left(4;0\right);B\left(0;2\right)\)

b/ \(OA+OB=a+b=a+\frac{a}{a-2}=a+1+\frac{2}{a-2}\)

\(=a-2+\frac{2}{a-2}+3\ge2\sqrt{\frac{2\left(a-2\right)}{a-2}}+3=3+2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left(a-2\right)^2=2\Leftrightarrow a=2+\sqrt{2}\Rightarrow b=1+\sqrt{2}\)

\(\Rightarrow A\left(2+\sqrt{2};0\right);B\left(0;1+\sqrt{2}\right)\)

NV
20 tháng 9 2020

\(a^3+b^3+c^3-3abc=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab.0\)

\(=0-0=0\)

8 tháng 4 2019

@Nguyễn Việt Lâm

NV
8 tháng 4 2019

Đề bài sai mà, từ giả thiết suy ra \(\left[{}\begin{matrix}a=c\\ac=b^2\end{matrix}\right.\)

Trường hợp đầu tiên, chọn \(a=c=2;b=1\Rightarrow a^2+b^2+c^2=9\)

chính phương luôn

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

21 tháng 2 2018

a) \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\forall a;b\right)\)

Vậy bdt đã được cm

b) \(K=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)\)

Ta có :

\(\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(\Leftrightarrow\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n+1\right)^2\)

\(n^2+3n;n^2+3n+1\) là 2 số tn liên tiếp

\(\Rightarrow K\) không phải số chính phương

27 tháng 10 2017

A với B có tọa độ bn hả bn.Ko có thì làm kiểu j