a) CM tg acb = tg cad
b) CM bac = dca và suy ra ab // dc
c) CM ad // bc a b d c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó;ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
c: Xét ΔCBD có
CA là đường trung tuyến
CE=2/3CA
Do đó: E là trọng tâm của ΔCBD
=>DE đi qua trung điểm của BC
a) Ta có: AB < AC
=> ACB < ABC
ABH = 90 - 60 = 30o
b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o
ABI = 90 - 30 = 60
Xét 2 tam giác vuông AIB và BHA có: AB (chung)
Ta có: BAH = ABD = 60 (cmt)
=> AIB = BHA (ch - gn)
c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)
=> AIB = BHA = 60o
=> BEA = 180 - 60 - 60 = 60o
Có: ABE = BEA = EAB = 60
=> Tam giác ABE là tam giác đều.
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có: AB = AE
EAD = DAB = 30o
Cạnh AD chung.
=> Tam giác ADB = tam giác ADC (c.g.c)
=> DB = DB (1) và góc ABD = góc AED
Do đó:
CBx = CED (cùng kề bù với 2 góc = nhau)
CBx > C
=> DC > DE (2)
Từ (1); (2) => DC > DB
a)
Xét 2 tg ABD và ACD, có
AD cạnh chung
AB=AC (tgABC cân tại A)
góc BAD = góc CAD
=> tg ABD=tg ACD
b)
Trong tgABC, G là trọng tâm và AD là đường phân giác.
Mà trong 1 tg cân đường phân giác trùng lên đường trung tuyến.
Mặt khác thì trọng tâm nằm trên đường trung tuyến.
=> 3 điểm A,D,G nắm trên cùng 1 đoạn thẳng
Hay: 3 điểm A,D,G thẳng hàng
c)
Trong tg cân ABC, có đường phân giác AD
=> AD trùng lên đường trung trực xuất phát từ A
=> AD>AB ( tính chất đường vuông góc với đường xiên)
d)
Ta có: tg ABD vuông tại D (AD là đường trung trực)
=> AD^2 +DB^2 = AB^2 (định lí Py-ta-go)
=>AD^2 +5^2= 13^2 (DB^2=5^2 vì DB=DC=10/2=5)
=>AD^2=13^2-5^2=144=12^2
=> AD=12 (cm)
Mà AG là trọng tâm
=>AG=2/3 AD=8 cm
a) Xét \(\Delta ABD\)và \(\Delta CBF\)có:
\(\widehat{ADB}=\widehat{CFB}\left(=90^0\right)\).
\(\widehat{ABC}\)chung.
\(\Rightarrow\Delta ABD~\Delta CBF\left(g.g\right)\)(điều phải chứng minh).
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
DO đó: ΔAHB=ΔAHC
Suy ra: HB=HC
hay H là trung điểm của BC
b: Xét ΔMAD và ΔMBH có
\(\widehat{MAD}=\widehat{MBH}\)
MA=MB
\(\widehat{AMD}=\widehat{BMH}\)
Do đó:ΔMAD=ΔMBH
Suy ra: AD=BH
hay BH=2,5cm
Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
hay AH=6(cm)
bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với
a, Xét tam giác AHE và ABH có :
\(+,\widehat{AEH}=\widehat{AHB}=90^0\)
\(+,\widehat{HAB}chung\)
Vậy tam giác \(AHE~ABH\left(g.g\right)\)
b,
Theo hệ thức lượng trong tam giác vuông ta có :
\(AH^2=AE.AB=AF.AC\)
Vậy \(\frac{AE}{AC}=\frac{AF}{AB}\left(1\right)\)
Xét tam giác AEF và ACB có :
\(+,\)góc A chung
\(+,\left(1\right)\)
\(\Rightarrow\Delta AEF~ACB\left(c.g.c\right)\)
c, Tự làm nhé
A. Để chứng minh rằng $\triangle ABH \sim \triangle CAH$, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác này bằng nhau.
Ta có:
Vậy, theo định lí góc - cạnh - góc, ta có:
$$\frac{AB}{AH} = \frac{10}{AH} = \frac{AH}{AC} = \frac{AH}{16}$$
Từ đó suy ra:
$$\frac{AB}{AH} = \frac{AH}{AC} \Rightarrow \triangle ABH \sim \triangle CAH$$
B. Ta có:
$$k = \frac{AB}{AC} = \frac{10}{16} = \frac{5}{8}$$
$$k' = \frac{AC}{AB} = \frac{16}{10} = \frac{8}{5}$$
Vậy, ta đã suy ra được tỉ số đồng dạng giữa các cạnh của ba tam giác $\triangle ABH$, $\triangle CAH$ và $\triangle ABC$.
Do đó, ta có:
$$BC = AB \times k' = 10 \times \frac{8}{5} = 16$$
$$AH = AC \times k = 16 \times \frac{5}{8} = 10$$
C. Để tính diện tích của các tam giác này, ta sử dụng công thức:
$$S = \frac{1}{2} \times cạnh\ gần\ đáy \times độ\ cao$$
$$S_{ABH} = \frac{1}{2} \times AB \times AH = \frac{1}{2} \times 10 \times 10 = 50\ cm^2$$
$$S_{CAH} = \frac{1}{2} \times AC \times AH = \frac{1}{2} \times 16 \times 10 = 80\ cm^2$$
$$S_{ABC} = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times 10 \times 16 = 80\ cm^2$$
a: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc ABH=góc CAH
=>ΔABH đồng dạng vói ΔCAH
=>k=AB/CA=5/8
b \(BC=\sqrt{10^2+16^2}=2\sqrt{89}\left(cm\right)\)
\(AH=\dfrac{10\cdot16}{2\sqrt{89}}=\dfrac{80}{\sqrt{89}}\left(cm\right)\)
c: \(S_{ABC}=\dfrac{1}{2}\cdot10\cdot16=80\left(cm^2\right)\)
\(HB=\dfrac{10^2}{2\sqrt{89}}=\dfrac{50}{\sqrt{89}}\left(cm\right)\)
=> S ABH=2000/89(cm2)
=>S ACH=5120/89cm2
pls help me