Cho a, b \(\in N\) chứng minh rằng ( 2a + 4b) \(⋮\)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1+1+2a}{1+2a}+\dfrac{2-\left(1+4b\right)}{1+4b}=1+\dfrac{1}{1+2a}+\dfrac{2}{1+4b}-1\)
vậy nếu:
a<-1/2
b<-1/4 luôn thỏa mãn a+b<=3
A< 0 => sai--> xem lại đề
\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)
\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)
1)
Ta có : \(6a+9b=3.\left(2a+3b\right)\)(đặt 3 làm thừa số chung )
Vì \(3⋮3\)
\(\Leftrightarrow3.\left(2a+3b\right)⋮3\left(đpcm\right)\)
2)
Ta có : \(2a+4b=2a+2b+2b⋮3\)
\(4a+2b=2a+2a+2b\)
Vì \(\hept{\begin{cases}2a⋮3\\2b⋮3\end{cases}}\Rightarrow2a+2a+2b⋮3\Leftrightarrow\left(4a+2b\right)⋮3\)
3)
Ta có : \(\overline{aaa}=a.111=a.3.37\)
Vì 37 chia hết cho 37
<=> a.3.37 chia hết cho 37
<=> \(\overline{aaa}⋮37\)
a+5b chia hết cho 9 nên suy ra: a chia hết cho 9 và 5b cũng chia hết cho 9
Vì 5b chia hết cho 9 nên b chắc chắn phải chia hết cho 9. Ta có:
a chia hết cho 9 suy ra 2a chia hết cho 9.
b chia hết cho 9 suy ra 4b chia hết cho 9.
2 số đều chia hết cho 9 thì suy ra hiệu của chũng cũng chia hết cho 9.
Vậy 2a-4b chia hết cho 9.
a; CM (2a + 6) ⋮ 2
Ta có: 2a + 6 = 2.(a + 3) ⋮ 2 \(\forall\) a(đpcm)
b; (9a + 27b) ⋮ 9
Ta có: 9a + 27b = 9(a + 3b) ⋮ 9 \(\forall\) a; b
c; CM : (2a + 4b + 1) không chia hết cho 2
Ta có: 2a +4b + 1 = 2(a + 2b) + 1
Vì 2.(a + 2b) ⋮ 2 mà 1 không chia hết cho 2 nên
(2a + 4b + 1) không chia hết cho 2 (đpcm)
d; CM : (5a + 15b + 3) không chia hết cho 5
Ta có: 5a + 15b + 3 = (5a+ 15b) + 3 = 5.(a + 3b) + 3
Vì 5.(a + 3b) ⋮ 5 mà 3 không chia hết cho 5 nên
(5a + 15b + 3) không chia hết cho 5 (đpcm)
Ta có:2a+4b
=2a+2x2b
=2(a+2b)
=>2a+4b chia hết cho 2