K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

chỉ có 1 số 6 thôi,không phải là 66 đâu

2 tháng 1 2018

post ít một thôi

16 tháng 7 2018

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:

\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)

\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)

\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)

\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)

Nên GTNN của P là 17 đạt được khi a=b=2

14 tháng 4 2020

a - b = 4 ; b - c = -2                    (1)

=> a - b + b - c = 4 - 2 

=> a - c = 2                     (2)

(1) => a - b - b + c = 4 + 2 

=> a - 2b + c = 6                   (3)

\(T=\frac{a^2+b^2+c^2-ab-bc-ac}{a^2-c^2-2ab+2bc}\)

\(2T=\frac{2a^2+2b^2-2ab-2bc-2ac}{\left(a-c\right)\left(a+c\right)-2b\left(a-c\right)}\)

\(2T=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-c\right)\left(a+c-2b\right)}\)   và (1)(2)(3)

\(\Rightarrow2T=\frac{4^2+\left(-2\right)^2+2^2}{2\cdot6}=2\)

\(\Rightarrow T=1\)