\(\frac{^{a^2}}{4}+b^2+c>ab-2ab-ac\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:
\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)
\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)
\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)
\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)
Nên GTNN của P là 17 đạt được khi a=b=2
![](https://rs.olm.vn/images/avt/0.png?1311)
a - b = 4 ; b - c = -2 (1)
=> a - b + b - c = 4 - 2
=> a - c = 2 (2)
(1) => a - b - b + c = 4 + 2
=> a - 2b + c = 6 (3)
\(T=\frac{a^2+b^2+c^2-ab-bc-ac}{a^2-c^2-2ab+2bc}\)
\(2T=\frac{2a^2+2b^2-2ab-2bc-2ac}{\left(a-c\right)\left(a+c\right)-2b\left(a-c\right)}\)
\(2T=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-c\right)\left(a+c-2b\right)}\) và (1)(2)(3)
\(\Rightarrow2T=\frac{4^2+\left(-2\right)^2+2^2}{2\cdot6}=2\)
\(\Rightarrow T=1\)