K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

ĐỀ SAI NHÉ,PHẢI LÀ (M,N)=1 THÔI

Dễ dàng CM được tính chất sau: 1 số chính phương chia hết cho số nguyên tố p thì chia hết cho \(p^2\)

Quay lại với  bài này: 

Đặt: \(\hept{\begin{cases}m=p_1.p_2...p_i\\n=q_1.q_2...q_j\end{cases}},p_k,q_l\)là các số nguyên tố và do (m,n)=1 => \(p_k\)bất kỳ khác \(q_l\)

Áp dụng trực tiếp tính chất trên ta => m,n là số chính phương

4 tháng 2 2018

Ta có: a+b chia hết k; c+d chia hết k (\(k\in\)N*)

Có 2 trường hợp:

+a,b,c,d đều chia hết cho k

+a,b,c,d đều không chia hết cho k

TH1:a,b,c,d chia hết k

=>ad chia hết k; bc chia hết k

=>ad-bc chia hết k

TH2:a,b,c,d không chia hết k

=>ad không chia hết k; bc không chia hết k

=>ad-bc chia hết k

Vậy ad-bc chia hết cho k với tất cả 2 trường hợp

Ta có: \(S_{m-n}=\frac{\left(\sqrt{2}+1\right)^m}{\left(\sqrt{2}+1\right)^n}+\frac{\left(\sqrt{2}-1\right)^m}{\left(\sqrt{2}-1\right)^n}\)

\(=\left(\sqrt{2}+1\right)^m\cdot\left(\sqrt{2}-1\right)^n+\left(\sqrt{2}-1\right)^m\left(\sqrt{2}+1\right)^n\)

Do đó:

\(S_{m+n}+S_{m-n}=\left(\sqrt{2}+1\right)^{m+n}+\left(\sqrt{2}-1\right)^{m+n}+\left(\sqrt{2}+1\right)^m\cdot\left(\sqrt{2}-1\right)^n+\left(\sqrt{2}-1\right)^m\cdot\left(\sqrt{2}+1\right)^n\)

\(=\left(\sqrt{2}+1\right)^m\left[\left(\sqrt{2}+1\right)^n+\left(\sqrt{2}-1\right)^n\right]+\left(\sqrt{2}-1\right)^m\cdot\left[\left(\sqrt{2}-1\right)^n+\left(\sqrt{2}+1\right)^n\right]\)

\(=\left[\left(\sqrt{2}+1\right)^n+\left(\sqrt{2}-1\right)^n\right]\cdot\left[\left(\sqrt{2}+1\right)^m+\left(\sqrt{2}-1\right)^m\right]\)

\(=S_m\cdot S_n\)(đpcm)

8 tháng 5 2020

Cảm ơn bn nhìu

15 tháng 6 2015

* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương

Ta có 1!+2!+3!+4! chia 10 dư 3

5!+6!+....+n! chia hết cho 10

Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn      (1)

* Chứng mịnh A không thể là lũy thừa với mũ lẻ

+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên

+) Với n lớn hơn hoặc bằng 5

Ta có 1!+2!+3!+4!+5! chia hết cho 9

6!+7!+....+n! chia hết cho 9

=> A chia hết cho 9

+) Ta thấy 9!+10!+...+n! chia hết cho 7

còn 1!+2!+...+8! chia cho 27 dư 9            (2)

Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)

15 tháng 6 2015

oggy và những chú gián làm chừng chừng

25 tháng 1 2017

a chia hết cho m suy ra a = m.q (q thuộc N)

Suy ra k.a = k.(m.q)

Suy ra k.a chia hết cho m

T mk nha mk t lại cho mk hứa

28 tháng 8 2016

Ta có S m-n = (√2 + 1)/(√2 + 1)+ (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n

Từ đó 

S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)

= (√2 + 1)m [(√2 + 1)+ (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]

= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]

= S​ .S n

28 tháng 8 2016

sorry mk ko bít!!! ^^

6476575756876982525435465658768768676968256346564576576576