K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

Đặt \(\sqrt{2x^2+5x+1}=a\) (a không âm) => a2 = 2x2 + 5x + 1 => 3a2 = 6x2 + 15x + 3

pt <=> 3a2 + a - 4 = 0

<=> \(\left[{}\begin{matrix}a=1\left(TM\right)\\a=\dfrac{-4}{3}\left(KTM\right)\end{matrix}\right.\)

<=> \(\sqrt{2x^2+5x+1}=1\)

<=> 2x2 + 5x + 1 = 1

<=> 2x2 + 5x = 0

<=> x = 0 hoặc x = -2,5

Vậy ...

6 tháng 4 2020

Ta có : 6.x2 + 15.x + \(\sqrt{2.x^2+5.x+1}=1\)

<=> 3.( 2.x2 + 5.x + 1 ) + \(\sqrt{2.x^2+5.x+1}-4=0\)

Đặt \(\sqrt{2.x^2+5.x+1}=a\left(a>0\right)\)

=> 3.a2 + a -4 =0

<=> ( 3.a + 4 ) .( a - 1 ) = 0

=> a = 1 => 2.x2 + 5.x +  1 =1 

<=> \(\orbr{\begin{cases}x=0\\x=\frac{-5}{2}\end{cases}}\)

Vậy nghiệm cuối cùng là { 0 ; \(\frac{-5}{2}\)

23 tháng 3 2017

Câu 1:

Đặt \(3x-16y-24=k\left(k\in N\right)\) khi đó:

\(\sqrt{9x^2+16x+32}=k\Rightarrow9x^2+16x+32=k^2\)

\(\Rightarrow9\left(x+\dfrac{8}{9}\right)^2+\dfrac{224}{9}=k^2\)

\(\Rightarrow\dfrac{1}{9}\left(\left(9x+8\right)^2-9k^2\right)=-\dfrac{224}{9}\)

\(\Rightarrow\left(9x+8+3k\right)\left(9x+8-3k\right)=-224\)

tự giải nốt

23 tháng 3 2017

Câu 2:

\(4x^3+5x^2+1=\sqrt{3x+1}-3x\)

\(\Leftrightarrow4x^3+5x^2+3x+1=\sqrt{3x+1}\)

\(\Leftrightarrow 16x^6+40x^5+49x^4+38x^3+19x^2+6x+1=3x+1\)

\(\Leftrightarow x(4x+1)(4x^4+9x^3+10x^2+7x+3)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{4}\end{matrix}\right.\)

NV
13 tháng 12 2018

ĐKXĐ: \(x\ge\dfrac{2}{7}\)

\(\sqrt{5x^2-5x+3}-\left(x+1\right)+2x-\sqrt{7x-2}+4x^2-7x+2=0\)

\(\Leftrightarrow\dfrac{4x^2-7x+2}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{4x^2-7x+2}{2x+\sqrt{7x-2}}+4x^2-7x+2=0\)

\(\Leftrightarrow\left(4x^2-7x+2\right)\left(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1\right)=0\)

Ta có \(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1>0\)

\(\Rightarrow4x^2-7x+2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7-\sqrt{17}}{8}\\x=\dfrac{7+\sqrt{17}}{8}\end{matrix}\right.\)

\(\)

7 tháng 5 2020

\(\hept{\begin{cases}y^2\sqrt{2x-1}+\sqrt{3}=5y^2-\sqrt{6x-3}\left(1\right)\\2y^4\left(5x^2-17x+6\right)=6-15x\left(2\right)\end{cases}}\)

\(ĐKXĐ:x\ge\frac{1}{2}\)

\(\left(2\right)\Leftrightarrow2y^4\left(5x-2\right)\left(x-3\right)=3\left(2-5x\right)\)\(\Leftrightarrow\left(5x-2\right)\left[2y^4\left(x-3\right)+3\right]=0\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\left(KTMĐK\right)\\2y^4\left(x-3\right)+3=0\end{cases}}\)

Với \(2y^4\left(x-3\right)+3=0\)thì ta được \(y^4=\frac{3}{6-2x}\Rightarrow y^2=\sqrt{\frac{3}{6-2x}}\)(3)

Thay vào (1), ta được \(\sqrt{\frac{3}{6-2x}}.\sqrt{2x-1}+\sqrt{3}=5\sqrt{\frac{3}{6-2x}}-\sqrt{6x-3}\)

\(\Leftrightarrow\sqrt{6x-3}+\sqrt{3\left(6-2x\right)}=5\sqrt{3}-\sqrt{\left(6x-3\right)\left(6-2x\right)}\)

Đặt \(u=\sqrt{6x-3};v=\sqrt{3\left(6-2x\right)}\left(u,v\ge0\right)\).Khi đó ta được hệ phương trình:

\(\hept{\begin{cases}u^2+v^2=15\\u+v=5\sqrt{3}-\frac{uv}{\sqrt{3}}\end{cases}}\Leftrightarrow\hept{\begin{cases}u^2+v^2=15\\\sqrt{3}\left(u+v\right)+uv=15\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3\left(u+v\right)^2=45+6uv\\\sqrt{3}\left(u+v\right)=15-uv\end{cases}}\)

Từ hệ trên suy ra được \(45+6uv=\left(15-uv\right)^2\Leftrightarrow\left(uv\right)^2-36uv+180=0\)

\(\Leftrightarrow\left(uv-6\right)\left(uv-30\right)=0\Leftrightarrow\orbr{\begin{cases}uv=6\\uv=30\end{cases}}\)(\(uv\ge0\))

+) Với uv = 30 ta được: \(u+v=-5\sqrt{3}\)(loại)

+) Với uv = 6 ta được: \(u+v=3\sqrt{3}\)suy ra u, v là hai nghiệm của phương trình \(k^2-3\sqrt{3}k+6=0\)

Giải phương trình bậc hai trên ta thu được hai nghiệm \(2\sqrt{3}\)và \(\sqrt{3}\)

Suy ra \(u=2\sqrt{3};v=\sqrt{3}\)hoặc \(u=\sqrt{3};v=2\sqrt{3}\)

* Với \(u=2\sqrt{3};v=\sqrt{3}\)thì \(\hept{\begin{cases}\sqrt{6x-3}=2\sqrt{3}\\\sqrt{3\left(6-2x\right)}=\sqrt{3}\end{cases}}\Rightarrow x=\frac{5}{2}\)

* Với \(u=\sqrt{3};v=2\sqrt{3}\)thì \(\hept{\begin{cases}\sqrt{6x-3}=\sqrt{3}\\\sqrt{3\left(6-2x\right)}=2\sqrt{3}\end{cases}}\Rightarrow x=1\)

+) Thay \(x=\frac{5}{2}\)vào (3) tìm được \(y=\pm\sqrt[4]{3}\)

+) Thay x = 1 vào (3) tìm được \(y=\pm\sqrt{\frac{\sqrt{3}}{2}}\)

Vậy hệ phương trình có 4 nghiệm (x;y) là \(\left\{\left(1;\sqrt{\frac{\sqrt{3}}{2}}\right);\left(1;-\sqrt{\frac{\sqrt{3}}{2}}\right);\left(\frac{5}{2};\sqrt[4]{3}\right);\left(\frac{5}{2};-\sqrt[4]{3}\right)\right\}\)

7 tháng 5 2020

ĐKXĐ: \(x\ge\frac{1}{2}\)biến đổi phương trình thứ hai ta được

\(2y^4\left(5x-2\right)\left(x-3\right)=3\left(2-5x\right)\Rightarrow\orbr{\begin{cases}x=\frac{2}{5}\left(loai\right)\\2xy^4+3=6y^4\end{cases}}\)

Ta đưa về hệ về pt \(\hept{\begin{cases}y^2\sqrt{2x-1}+\sqrt{3}\cdot\sqrt{2x-1}=5y^2-\sqrt{3}\\2xy^4+3=6y^4\end{cases}}\)

Nhận thấy y=0 không là nghiệm của hệ pt nên chia cả 2 vế của pt thứ nhất cho y2 và pt thứ hai cho y4 có:

\(\hept{\begin{cases}\sqrt{2x-1}+\frac{\sqrt{3}}{y^2}\sqrt{2x-1}=5-\frac{\sqrt{3}}{y^2}\\2x-1+\frac{3}{y^4}=5\end{cases}}\)

Đặt \(a=\sqrt{2x-1};b=\frac{\sqrt{3}}{y^2}\left(a\ge0;b\ge0\right)\)

Ta có hệ pt \(\hept{\begin{cases}a+ab+b=5\\a^2+b^2=5\end{cases}}\)

Ta được \(a=\frac{5-b}{1+b}\)thay vào phương trình thứ hai ta có:

\(\left(\frac{5-b}{1+b}\right)^2+b^2=5\Leftrightarrow b^4+2b^3-3b^2-20b+20=0\Leftrightarrow\left(b-1\right)\left(b^2+5b+10\right)=0\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=1\\b=2\end{cases}}\)

Với \(\hept{\begin{cases}a=2\\b=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\pm\sqrt[4]{3}\end{cases}}}\)

Với \(\hept{\begin{cases}a=1\\b=2\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\pm\frac{\sqrt[4]{3}}{\sqrt{2}}\end{cases}}}\)

Vậy \(\left(x;y\right)\in\left\{\left(\frac{5}{2};\pm\sqrt[4]{3}\right);\left(1;\pm\frac{\sqrt[4]{3}}{\sqrt{2}}\right)\right\}\)

8 tháng 11 2018

<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)

mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\)\(\sqrt{5\left(x^2-1\right)^2+4}\ge4\)\(2\left(x+1\right)^2\ge0\)với mọi x 

=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)

'=" xảy ra<=> x+1=0<=> x=-1

2 tháng 8 2015

\(pt\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}+\left(x+1\right)^2=6\)

Mà \(\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{4}=2\)

\(\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{16}=4\)

\(\left(x+1\right)^2\ge0\)

\(\Rightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}+\left(x+1\right)^2\ge6\) với mọi x thuộc R.

Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

2 tháng 8 2015

x=-3 đúng thì **** giùm nha bạn