K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2020

Có: \(3x-4y=0 \Leftrightarrow y=\dfrac{3x}{4}\)

Thay vào biểu thức A được: 

\(A=x^2+\Bigg(\dfrac{3x}{4}\Bigg)^2 \)

Vì \(x^2 ≥0 ; \Bigg(\dfrac{3x}{4}\Bigg)^2 ≥0\)

\(\Rightarrow A_{min} \Leftrightarrow x=0 \Rightarrow y=0\)

Vậy \(\Rightarrow A_{min} \Leftrightarrow x=y=0\).

21 tháng 12 2020

cam on nha banvui

2 tháng 4 2018

Để B đạt Min

\(\Rightarrow\frac{8-x}{x-3}=\frac{11-\left(x-3\right)}{x-3}=\frac{11}{x-3}-1\)đạt min

hay 11/ x-3 đạt min

GTLN của x-3 có số đối là 3-x là lớn nhất

--> 3-x nhỏ nhất 

<--> 3-x = 1

           x=2

Vậy................

DD
4 tháng 10 2021

\(P=\sqrt{3-x}+\sqrt{4-x}\)(ĐK: \(x\le3\))

\(\le\sqrt{3-3}+\sqrt{4-3}=1\)

Dấu \(=\)khi \(x=3\).

23 tháng 11 2016

Bài 1 ) \(P=\left|x-1\right|+5\)

Ta có : \(\left|x-1\right|\ge0\)

\(\Leftrightarrow\left|x-1\right|+5\ge5\)

Dấu " = " xảy ra khi và chỉ khi \(x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(Min_P=5\Leftrightarrow x=1\)

Bài 2 ) \(Q=7-\left|5-x\right|\)

Ta có : \(\left|5-x\right|\ge0\)

\(\Rightarrow7-\left|5-x\right|\le7\)

Dấu " = " xảy ra khi và chỉ khi \(5-x=0\)

\(\Leftrightarrow x=5\)

Vậy \(Max_Q=7\Leftrightarrow x=5\)

 

23 tháng 11 2016

17 tháng 6 2019

11 tháng 2 2020

\(\left|x-2\right|\ge0;y+5\ge0\Rightarrow\left|x-2\right|+\left|y+5\right|\ge0\)

\(\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15\)

Dấu "=" xảy ra tại x=2;y=-5

11 tháng 2 2020

Ta có: A= \(\left|x-2\right|+\left|y+5\right|-15\)

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y+5\right|\ge0\end{cases}\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15}\)

Để A nhỏ nhất thì Min (A) = -15 <=> x=2; y= -5

(Min là giá trị nhỏ nhất)

29 tháng 7 2018

Áp dụng BĐT Cauchy - Schwarz dạng engle ta có:

\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{\left(1+1+1\right)^2}{1+x+1+y+1+z}=\frac{9}{3+\left(x+y+z\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y=z=1\)

Vậy Min A = 3/2   khi   x = y = z = 1