3) (x^2+x)^2+4x^2+4x-12 4) x^7+x^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1, a,= (x+2)^2/3.(x+2) = x+2/3
b, = 3x.(x+4)/2x.(x+4) = 3/2
k mk nha
Lời giải:
a. $\sqrt{x^2}=1$
$\Leftrightarrow |x|=1$
$\Leftrightarrow x=\pm 1$
b. $\sqrt{4x^2-4x+1}=3$
$\Leftrightarrow \sqrt{(2x-1)^2}=3$
$\Leftrightarrow |2x-1|=3$
$\Leftrightarrow 2x-1=\pm 3$
$\Leftrightarrow x=-1$ hoặc $x=2$
3. ĐKXĐ: $x^2\geq 4$
$\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0$
Do $\sqrt{x^2-4}\geq 0; \sqrt{x^2+4x+4}\geq 0$ với mọi $x\in$ ĐKXĐ nên để tổng của chúng bằng $0$ thì:
$\sqrt{x^2-4}=\sqrt{x^2+4x+4}=0$
$\Leftrightarrow (x-2)(x+2)=(x+2)^2=0$
$\Leftrightarrow x=-2$
4.
PT \(\Leftrightarrow \left\{\begin{matrix} x-3\geq 0\\ x^2-4x+3=(x-3)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x^2-4x+3=x^2-6x+9\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 2x=6\end{matrix}\right.\Leftrightarrow x=3\)
Ý 1:
\(\sqrt{x^2}=1\\ \Leftrightarrow\left|x\right|=1\\ Vậy:x=1.hoặc.x=-1\\ S=\left\{\pm1\right\}\)
Ý 2:
\(\sqrt{4x^2-4x+1}=3\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\\ \Leftrightarrow\left|2x-1\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ Vậy:S=\left\{-1;2\right\}\)
x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0
⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)
Vậy pt vô nghiệm
*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm
Ta có: \(x^2-4x+7=0\)
\(\Leftrightarrow x^2-4x+4+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3=0\)
mà \(\left(x-2\right)^2+3\ge3>0\forall x\)
nên \(x\in\varnothing\)(đpcm)
Bài 1:
a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)
\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)
\(\Rightarrow16x-5=x-2\)
\(\Rightarrow16x-x=5-2\)
\(\Rightarrow15x=3\)
\(\Rightarrow x=\dfrac{15}{3}=5\)
b) \(12x^2-4x\left(3x+5\right)=10x-17\)
\(\Rightarrow12x^2-12x^2-20x=10x-17\)
\(\Rightarrow-20x=10x-17\)
\(\Rightarrow-20x-10x=-17\)
\(\Rightarrow-30x=-17\)
\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)
c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)
\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)
\(\Rightarrow-8x=12\)
\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)
Bài 2:
a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)
\(=x^2-7x+5x-35-7x^2+21x\)
\(=-6x^2+19x-35\)
b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)
\(=x^3-x^2-2x-x^2+x-5x-5\)
\(=x^3-2x^2-6x-5\)
c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)
\(=x^2-7x-5x+35-x^2-3x+4x-12\)
\(=11x+23\)
d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)
\(=x^2-2x-x+2-x^2+2x+5x+10\)
\(=4x+12\)