Tìm GTLN của C = \(\frac{x+2}{|x|}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bất đẳng thức Cauchy cho 3 số không âm x^4, x^2, 1
\(x^4+x^2+1\ge3\sqrt[3]{x^4\cdot x^2\cdot1}=3\sqrt[3]{x^6}=3x^2\)
\(C=\frac{x^2}{x^4+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)
Dấu "=" xảy ra <=> x^4 = x^2 = 1 <=> x=1 hoặc x= -1
Vậy GTLN C=1/3 khi x=1 hoặc x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐK: \(x\ge0;x\ne1\)
\(C=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-x\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
hmm... Nên cho thêm đề là x nguyên
\(\left(+\right)\left|x\right|=x\Leftrightarrow x>0\left(x\ne0\right)\)
\(\Rightarrow C=\frac{x+2}{x}=1+\frac{2}{x}\)
C lớn nhất \(\Leftrightarrow1+\frac{2}{x}\)lớn nhất
\(\Leftrightarrow\frac{2}{x}\) nhỏ nhất \(\Leftrightarrow x=1\)Vì ( x > 0 )
\(\Leftrightarrow maxC=1+\frac{2}{1}=1+2=3\)
Dấu "=" xảy ra khi \(x=1\)
\(\left(+\right)\left|x\right|=-x\Leftrightarrow x< 0\)
\(\Rightarrow C=\frac{x+2}{-x}=-1+\frac{-2}{x}\)
C lớn nhất \(\Leftrightarrow-1+\frac{-2}{x}\)lớn nhất
\(\Leftrightarrow-\frac{2}{x}\) lớn nhất \(\Leftrightarrow x\)lớn nhất và x < 0
\(\Leftrightarrow x=-1\)
\(\Rightarrow maxC=-1+\frac{-2}{-1}=-1+2=1\)
Vậy GTLN của C = 3 tại x = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) |2x-2|=|2x+3|
TH1: 2x-2=2x+3
=> 2x-2=2x-2+5 ( vô lý )
=> Không tồn tại x
TH2: 2x-2=-2x-3
=> 2x+2x+3=2
=> 4x=-1
=> x=-1/4
Vậy: x=-1/4
b) \(A=\frac{1}{\sqrt{x-2}+3}\)
Để A đạt giá trị lớn nhất thì \(\sqrt{x-2}+3\) phải đạt giá trị nhỏ nhất
Có: \(\sqrt{x-2}\ge0\Rightarrow\sqrt{x-2}+3\ge3\)
Dấu = xảy ra khi x=2
Vậy: \(Max_A=\frac{1}{3}\) tại x=2
c) Có: \(\frac{2x+1}{x-2}< 2\Rightarrow\frac{2x+1}{x-2}-2< 0\)
\(\Rightarrow\frac{2x+1}{x-2}-\frac{2\left(x-2\right)}{x-2}< 0\)
\(\Rightarrow\frac{2x+1-2x+4}{x-2}< 0\)
\(\Rightarrow\frac{5}{x-2}< 0\)
\(\Rightarrow x< 2\)
a)
|2x-2| = |2x+3|
<=> \(\left[\begin{array}{nghiempt}2x-2=2x+3\\2x-2=-2x-3\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}0x=5\left(vl\right)\\4x=-1\end{array}\right.\)
<=> x = \(-\frac{1}{4}\)
\(C=\frac{x+2}{\left|x\right|}\)
-Với x > 0
\(\Rightarrow C=\frac{x+2}{x}=1+\frac{2}{x}\)
C đạt GTLN khi \(\frac{2}{x}\)đạt GTLN
\(\Rightarrow x\in UCLN\left(2\right)=2\)
Vậy với x = 2 <=> Max C = 2+1=3
-Với x < 0
\(C=\frac{x+2}{-x}=-1-\frac{2}{x}=-\left(1+\frac{2}{x}\right)\)
Để C có Max \(\Rightarrow1+\frac{2}{x}cóMin\)
\(\Rightarrow x\in UCNN\left(2\right)=\left(-2\right)\)
\(\Rightarrow x=-2< =>MaxC=-\left(1+-1\right)=0\)
-Với x = 0
\(\Rightarrow C=\frac{0+2}{0}=2\)
Vậy MaxC=2<=>x=0
Trong ba trường hợp trên ta thấy Max C = 3 <=> x = 2