K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

\(C=\frac{x+2}{\left|x\right|}\)

-Với x > 0

\(\Rightarrow C=\frac{x+2}{x}=1+\frac{2}{x}\)

C đạt GTLN khi \(\frac{2}{x}\)đạt GTLN

\(\Rightarrow x\in UCLN\left(2\right)=2\)

Vậy với x = 2 <=> Max C = 2+1=3

-Với x < 0

\(C=\frac{x+2}{-x}=-1-\frac{2}{x}=-\left(1+\frac{2}{x}\right)\)

Để C có Max \(\Rightarrow1+\frac{2}{x}cóMin\)

\(\Rightarrow x\in UCNN\left(2\right)=\left(-2\right)\)

\(\Rightarrow x=-2< =>MaxC=-\left(1+-1\right)=0\)

-Với x = 0

\(\Rightarrow C=\frac{0+2}{0}=2\)

Vậy MaxC=2<=>x=0

Trong ba trường hợp trên ta thấy Max C = 3 <=> x = 2

22 tháng 4 2019

Áp dụng bất đẳng thức Cauchy cho 3 số không âm x^4, x^2, 1
\(x^4+x^2+1\ge3\sqrt[3]{x^4\cdot x^2\cdot1}=3\sqrt[3]{x^6}=3x^2\)

\(C=\frac{x^2}{x^4+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)

Dấu "=" xảy ra <=> x^4 = x^2 = 1 <=> x=1 hoặc x= -1
Vậy GTLN C=1/3 khi x=1 hoặc x=-1

3 tháng 7 2018

a) ĐK:  \(x\ge0;x\ne1\)

\(C=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)

\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-x\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}\)

8 tháng 4 2020

hmm... Nên cho thêm đề là x nguyên

\(\left(+\right)\left|x\right|=x\Leftrightarrow x>0\left(x\ne0\right)\)

\(\Rightarrow C=\frac{x+2}{x}=1+\frac{2}{x}\)

C lớn nhất \(\Leftrightarrow1+\frac{2}{x}\)lớn nhất 

\(\Leftrightarrow\frac{2}{x}\) nhỏ nhất  \(\Leftrightarrow x=1\)Vì ( x > 0 )

\(\Leftrightarrow maxC=1+\frac{2}{1}=1+2=3\)

Dấu "=" xảy ra khi \(x=1\)

\(\left(+\right)\left|x\right|=-x\Leftrightarrow x< 0\)

\(\Rightarrow C=\frac{x+2}{-x}=-1+\frac{-2}{x}\)

C lớn nhất \(\Leftrightarrow-1+\frac{-2}{x}\)lớn nhất

\(\Leftrightarrow-\frac{2}{x}\) lớn nhất \(\Leftrightarrow x\)lớn nhất và x < 0

\(\Leftrightarrow x=-1\)

\(\Rightarrow maxC=-1+\frac{-2}{-1}=-1+2=1\)

Vậy GTLN của C = 3 tại x = 1 

6 tháng 11 2016

a) |2x-2|=|2x+3|

TH1: 2x-2=2x+3

=> 2x-2=2x-2+5 ( vô lý )

=> Không tồn tại x

TH2: 2x-2=-2x-3

=> 2x+2x+3=2

=> 4x=-1

=> x=-1/4

Vậy: x=-1/4

b) \(A=\frac{1}{\sqrt{x-2}+3}\)

Để A đạt giá trị lớn nhất thì \(\sqrt{x-2}+3\) phải đạt giá trị nhỏ nhất

Có: \(\sqrt{x-2}\ge0\Rightarrow\sqrt{x-2}+3\ge3\)

Dấu = xảy ra khi x=2

Vậy: \(Max_A=\frac{1}{3}\) tại x=2

c) Có: \(\frac{2x+1}{x-2}< 2\Rightarrow\frac{2x+1}{x-2}-2< 0\)

\(\Rightarrow\frac{2x+1}{x-2}-\frac{2\left(x-2\right)}{x-2}< 0\)

\(\Rightarrow\frac{2x+1-2x+4}{x-2}< 0\)

\(\Rightarrow\frac{5}{x-2}< 0\)

\(\Rightarrow x< 2\)

5 tháng 11 2016

a)

|2x-2| = |2x+3|

<=> \(\left[\begin{array}{nghiempt}2x-2=2x+3\\2x-2=-2x-3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}0x=5\left(vl\right)\\4x=-1\end{array}\right.\)

<=> x = \(-\frac{1}{4}\)