Với a,b,c lớn hớn 0 .Cm \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\:\:\)lớn hơn hoặc bằng 3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Biến đổi vế 2 :
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )
\(=\frac{bc+ac+ab}{abc}\)
Ta có :
\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)
\(=\frac{abc+abc+abc}{abc}\)\(=3\)
→ ( a + b + c ) = 3
Ta có : 3 . 3 = 9 => ĐPCM
<=> \(\frac{b+c-a}{2a}+1+\frac{a-b+c}{2b}+1+\frac{a+b-c}{2c}+1\ge\frac{3}{2}+3\)
<=> \(\frac{a+b+c}{2c}+\frac{a+b+c}{2b}+\frac{a+b+c}{2c}\ge\frac{9}{2}\)
<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
<=> \(\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\ge9\)
<=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)
Ap dung bdt \(\frac{a}{b}+\frac{b}{a}\ge2\)
Suy ra ve trai >= 2.3=6=ve phai
=> DPCM
Dau = xay ra <=> a=b=c
mik phai di hoc nen tra loi tat mong ban thong cam
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\)
\(\Leftrightarrow a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+b-\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+c-\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\)
\(\Leftrightarrow a+b+c-\left[\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\right]\)
Áp dụng bất đẳng thức Cauchy - Schwarz cho 3 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}a^2+ab+b^2\ge3\sqrt[3]{a^3b^3}=3ab\\b^2+bc+c^2\ge3\sqrt[3]{b^3c^3}=3bc\\c^2+ca+a^2\ge3\sqrt[3]{c^3a^3}=3ca\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\le\dfrac{ab\left(a+b\right)}{3ab}=\dfrac{a+b}{3}\\\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}\le\dfrac{bc\left(b+c\right)}{3bc}=\dfrac{b+c}{3}\\\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\le\dfrac{ca\left(c+a\right)}{3ca}=\dfrac{c+a}{3}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\le\dfrac{2\left(a+b+c\right)}{3}\)
\(\Leftrightarrow a+b+c-\left[\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\right]\ge a+b+c-\dfrac{2\left(a+b+c\right)}{3}\)
\(\Leftrightarrow a+b+c-\left[\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\right]\ge\dfrac{a+b+c}{3}\)
\(\Leftrightarrow\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\ge\dfrac{a+b+c}{3}\) ( đpcm )
Dấu "=" xảy ra khi \(a=b=c\)
a,b,c< 0 mà a+b+c bé hơn hoặc bằng 1
a+b+c ít nhất phải bằng 3 chứ!
tham khảo thui nhé, chưa tìm đc lời giải phù hợp :'<
+) Với 3 số a,b,c đều lớn nhất ( a=b=c )
\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a=H\) (1)
+) Không mất tính tổng quát, với a và b là số lớn nhất ( a=b>c )
\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{2}{a}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (2)
+) Không mất tính tổng quát, với a là số lớn nhất ( a>b, a>c )
\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (3)
(1), (2) và (3) \(\Rightarrow\)\(a\ge H\) với a là số lớn nhất hoặc 1 trong các số lớn nhất ( tương tự với b và c )
Keke
\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\ge\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\) \(\left(i\right)\)
Đặt \(x=\frac{1}{a};\) \(y=\frac{2}{b};\) và \(z=\frac{3}{c}\) \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{2}{b}\\c=\frac{3}{z}\end{cases}}\) nên \(x,y,z>0\)
Khi đó, ta có thể biểu diễn lại bđt \(\left(i\right)\) dưới dạng ba biến \(x,y,z\) như sau:
\(x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3xz}{2z+x}\) \(\left(ii\right)\)
Lúc này, ta cần phải chứng minh bđt \(\left(ii\right)\) luôn đúng với mọi \(x,y,z>0\)
Thật vậy, ta có:
\(2x+y=x+x+y\ge3\sqrt[3]{x^2y}\)
\(\Rightarrow\) \(\frac{3xy}{2x+y}\le\frac{3xy}{3\left(x^2y\right)^{\frac{1}{3}}}=\left(xy^2\right)^{\frac{1}{3}}\le\frac{x+2y}{3}\) \(\left(1\right)\)
Thiết lập các bđt còn lại theo vòng hoán vị \(y\rightarrow z\rightarrow x\) , ta có:
\(\frac{3yz}{2y+z}\le\frac{y+2z}{3}\) \(\left(2\right);\) \(\frac{3xz}{2z+x}\le\frac{z+2x}{3}\) \(\left(3\right)\)
Cộng từng vế ba bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta được:
\(VP\left(ii\right)\le\frac{x+2y+y+2z+z+2x}{3}=\frac{3\left(x+y+z\right)}{3}=x+y+z=VT\left(ii\right)\)
Vậy, bđt \(\left(ii\right)\) được chứng minh.
nên kéo theo bđt \(\left(i\right)\) luôn là bđt đúng với mọi \(a,b,c>0\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z\) \(\Leftrightarrow\) \(6a=3b=2c\)
Đặt b+c=x , c+a=y , a+b=z => a+b+c=(x+y+z)/2
=> a=(y+z-x)/2 và b=(x+z-y)/2 và c=(x+y-z)/2
VT = a/(a+b) +b/(b+c) +c/(c+a)
=(y+z-x)/(2x) + (x+z-y)\(2y) + (x+y-z)/(2z)
=(y/x + z/x -1+ x/y + z/y -1+ x/z + y/z -1 )/2
=( y/x+ z/x + x/y + z/y + x/z + y/z -3 )/2
Áp dụng Bđt cô si (3 lần cho 3 cặp nghich đảo)
( y/x + x/y ) + (z/y + y/z) + (x/z+ z/x) >= 2x3 =6 <=>
( y/x + x/y ) + (z/y + y/z) + (x/z+ z/x) -3 >= 3<=>
[( y/x + x/y ) + (z/y + y/z) + (x/z+ z/x) -3]/2 >= 3/2<=>
VT >= 3/2
Dấu = xảy ra khi: x=y=z <=> a=b=c
Ta Đặt
\(b+c=x;c+a=y;a+b=z\)
\(\Rightarrow a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)
Khi đó VT trở thành:
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\cdot\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
Áp dụng BĐT cô-si, ta được;
VT\(\ge\frac{1}{2}\left(6-3\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c