Cho phương trình x-1/x-m =x+2/x-m
Tìm giá trị của m để phương tình có giá trị là số dương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. + Với m = − 1 2 phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .
+ Vậy khi m = − 1 2 phương trình có hai nghiệm x= 0 và x= 4.
b. + Phương trình có hai nghiệm dương phân biệt khi
Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0
+ Ta có Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R
+ Giải được điều kiện m > − 1 2 (*).
+ Do P>0 nên P đạt nhỏ nhất khi P 2 nhỏ nhất.
+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3 ( ∀ m > − 1 2 ) ⇒ P ≥ 3 ( ∀ m > − 1 2 ) .
và P = 3 khi m= 0 (thoả mãn (*)).
+ Vậy giá trị nhỏ nhất P = 3 khi m= 0.
\(\frac{x-1}{x-m}=\frac{x+2}{x+m}\)
\(\left(ĐKXĐ:x\ne m;x\ne-m\right)\)
\(\Rightarrow\frac{\left(x-1\right)\left(x+m\right)}{x^2-m^2}=\frac{\left(x+2\right)\left(x-m\right)}{x^2-m^2}\)
Khử mẫu 2 vế ta đc
\(\Rightarrow x^2+mx-x-m=x^2-mx+2x-2m\)
\(\Rightarrow x^2+mx-x-m-x^2+mx-2x+2m=0\)
\(2mx-3x+m=0\)
\(2mx+m-2x-1=-1-x\)
\(\left(m-1\right)\left(2x+1\right)=-1-x\)
Bạn làm tiếp nhé
\(\Delta=1-4\left(-m-2\right)\ge0\Leftrightarrow m\ge-\dfrac{9}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-m-2\end{matrix}\right.\)
\(x_1^2-x_1x_2-2x_2=16\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-2x_1x_2-2x_2=16\)
\(\Leftrightarrow-x_1-2\left(-m-2\right)-2x_2=16\)
\(\Leftrightarrow x_1+2x_2=2m-12\)
\(\Rightarrow x_1+x_2+x_2=2m-12\)
\(\Leftrightarrow-1+x_2=2m-12\Rightarrow x_2=2m-11\Rightarrow x_1=-1-x_2=-2m+10\)
Lại có: \(x_1x_2=-m-2\)
\(\Rightarrow\left(-2m+10\right)\left(2m-11\right)=-m-2\)
\(\Leftrightarrow4m^2-43m+108=0\Rightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{27}{4}\end{matrix}\right.\)
\(x=-3\Leftrightarrow\left(-3\right)^2-2m\left(-3\right)+m^2-4=0\\ \Leftrightarrow9+6m+m^2-4=0\\ \Leftrightarrow m^2+6m+5=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=5\end{matrix}\right.\)
Tổng các gt m là \(1+5=6\)
Δ=(2m-2)^2-4(2m-5)
=4m^2-8m+4-8m+20
=4m^2-16m+24
=4m^2-16m+16+8=(2m-4)^2+8>=8>0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
\(B=\dfrac{x_1^2}{x^2_2}+\dfrac{x_2^2}{x_1^2}\)
\(=\dfrac{x_1^4+x_2^4}{\left(x_1\cdot x_2\right)^2}=\dfrac{\left(x_1^2+x_2^2\right)^2-2\left(x_1\cdot x_2\right)^2}{\left(x_1\cdot x_2\right)^2}\)
\(=\dfrac{\left[\left(2m-2\right)^2-2\left(2m-5\right)\right]^2-2\left(2m-5\right)^2}{\left(2m-5\right)^2}\)
\(=\dfrac{\left(4m^2-8m+4-4m+10\right)^2}{\left(2m-5\right)^2}-2\)
\(=\left(\dfrac{4m^2-12m+14}{2m-5}\right)^2-2\)
\(=\left(\dfrac{4m^2-10m-2m+5+9}{2m-5}\right)^2-2\)
\(=\left(2m-1+\dfrac{9}{2m-5}\right)^2-2\)
Để B nguyên thì \(2m-5\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(m\in\left\{3;2;4;1;7\right\}\)
Để phương trình có một trong các nghiệm là x=2 nên
Thay x=2 vào phương trình, ta được:
\(\left(m+2\right)^2-\left(2-3m\right)^2=0\)
\(\Leftrightarrow\left(m+2+2-3m\right)\left(m+2-2+3m\right)=0\)
\(\Leftrightarrow4m\cdot\left(-2m+4\right)=0\)
mà 4>0
nên m(-2m+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\-2m+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\-2m=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)
Vậy: Để phương trình có 1 trong các nghiệm là x=2 thì \(m\in\left\{0;2\right\}\)
`x=2` là nghiệm phương trình nên thay x=2 vào ta có:
`(2+m)^2-(2-3m)^2=0`
`=>(2+m-2+3m)(2+m+2-3m)=0`
`=>4m(4-2m)=0`
`=>m(2-m)=0`
`=>` \left[ \begin{array}{l}m=0\\m=1\end{array} \right.
a, Thay m = -1 vào phương trình trên ta được
\(x^2+4x-5=0\)
Ta có : \(\Delta=16+20=36\)
\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)
Vậy với m = -1 thì x = -5 ; x = 1
b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được :
\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)
Vậy với x = 2 thì m = -10/3
c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)
\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)
\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1)
suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)
Thay vào (1) ta được : \(x_1=-4-5=-9\)
Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)
phương trình vô nghĩa bạn ạ
Đọc chưa hiểu :v
\(\frac{x-1}{x-m}=\frac{x+2}{x-m}\)
\(\frac{x-1-x-2}{x-m}=0\)
\(\frac{-3}{x-m}=0\)
=> pt ko có nghiệm ??