K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

\(9^{9^{9^9}}-9^{9^9}=9^{2a+1}-9^{2b+1}\equiv9-9\equiv0\left(mod10\right)\)

29 tháng 9 2018

Xét \(9^x\)
Nếu \(x=2k\)thì \(9^x=9^{2k}=81^k\)Luôn tận cùng là 1

Nếu \(x=2k+1\)thì \(9^x=9^{2k+1}=9.81^x\)Luôn tận cùng là 9
Ta có: \(9^9\)tận cùng là 1 là số lẻ

\(\Rightarrow9^{9^9}\)tận cùng là 1, đồng thời cũng là số lẻ

\(\Rightarrow9^{9^{9^9}}\)cũng tận cùng là 1

\(\Rightarrow9^{9^{9^9}}-9^{9^9}\)tận cùng là 0 nên chia hết cho 10
 

29 tháng 9 2018

Bạn ơi mình nhầm nhé.

\(9^9;9^{9^9};9^{9^{9^9}}\)đều tận cùng là 9, mình viết nhầm thành 1 nha. Xin lỗi bạn.

9 tháng 4 2019

Có: \(\frac{9}{10!}=\frac{9}{10!}\)

\(\frac{9}{11!}< \frac{10}{11!}=\frac{11-1}{11!}=\frac{11}{11!}-\frac{1}{11!}=\frac{1}{10!}-\frac{1}{11!}\)

\(\frac{9}{12!}< \frac{11}{12!}=\frac{12-1}{12!}=\frac{12}{12!}-\frac{1}{12!}=\frac{1}{11!}-\frac{1}{12!}\)

............

\(\frac{9}{1000!}< \frac{999}{1000!}=\frac{1000-1}{1000!}=\frac{1000}{1000!}-\frac{1}{1000!}=\frac{1}{999!}-\frac{1}{1000!}\)

\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{1}{1000!}< \frac{9}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{999!}-\frac{1}{1000!}\)

\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+...+\frac{1}{1000!}< \frac{10}{10!}-\frac{1}{1000!}=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\)

\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}< \frac{1}{9!}\)

\(\Rightarrowđpcm\)

8 tháng 4 2019

đặt tên là B

B =910!+911!+912!+.............+91000!B=910!+911!+912!+.............+91000!

Ta thấy :

910!=10110!=19!110!910!=10−110!=19!−110!

911!<11111!=110!111!911!<11−111!=110!−111!

91000!<100011000!=1999!11000!91000!<1000−11000!=1999!−11000!

B<19!110!+110!111!+...
.....+1999!11000!
⇒B<19!−110!+110!−111!+............+1999!−11000!

B<19!11000!B<19!−11000!

B<19!đpcm

16 tháng 4 2019

\(\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}\)

\(=\frac{10-1}{10!}+\frac{11-2}{11!}+...+\frac{1000-991}{1000!}\)

\(=\frac{10}{10!}-\frac{1}{10!}+\frac{11}{11!}-\frac{1}{11!}+...+\frac{1000}{1000!}-\frac{1}{1000!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)

\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\left(đpcm\right)\)

25 tháng 8 2018

a)\(10^9+10^8+10^7=10^7\left(10^2+10+1\right)=10^7\cdot111=2\cdot10^6\cdot555⋮555\)

b)\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{24}\cdot45⋮45\)

Chúc bạn học tốt :)!

28 tháng 6 2018

Ta có : 

\(E=\frac{9^{11}-9^{10}-9^9}{639}\)

\(E=\frac{9^8\left(9^3-9^2-9\right)}{639}\)

\(E=\frac{9^8.639}{639}\)

\(E=9^8\)

Chúc bạn học tốt ~ 

28 tháng 6 2018

Đặt B = 911 - 910 -99

B = 98. ( 93-92-9)

B =98. 639

Thay B vào A, có:

\(A=\frac{9^8.639}{639}=9^8\)

=> A là số tự nhiên ( đ p c m)

22 tháng 3 2019

a)\(\left(5^{2005}+5^{2004}+5^{2003}\right)\)

\(\Rightarrow5^{2003}.\left(5^2+5+1\right)\)

\(\Rightarrow5^{2003}.31⋮31\)