toán lớp 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dữ liệu sau không dại diện cho kết quả môn toán của các bạn lớp 7b.Vì tính đại diện của dữ liệu là lấy số ít biểu thị cho số đông.
Gọi số cuốn sách tham khảo môn Toán lớp 6, lớp 7 và lớp 8 mà thư viện đó mua lần lượt là x, y, z (x, y, z \( \in \)\(\mathbb{N}\))
Vì tổng cộng là 121 cuốn nên ta có \(x + y + z = 121\)
Vì số tiền dùng để mua mỗi loại sách đó là như nhau nên số cuốn sách và giá tiền một cuốn sách tương ứng là 2 đại lượng tỉ lệ nghịch.
Theo tính chất hai đại lượng tỉ lệ nghịch, ta có:
\(40.x=45.y=50.z \Rightarrow \dfrac{x}{{\dfrac{1}{{40}}}} = \dfrac{y}{{\dfrac{1}{{45}}}} = \dfrac{z}{{\dfrac{1}{{50}}}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{{\dfrac{1}{{40}}}} = \dfrac{y}{{\dfrac{1}{{45}}}} = \dfrac{z}{{\dfrac{1}{{50}}}}= \dfrac{{x + y + z}}{{\dfrac{1}{{40}} + \dfrac{1}{{45}} + \dfrac{1}{{50}}}} = \dfrac{{121}}{{\dfrac{{121}}{{1800}}}} = 121.\dfrac{{1800}}{{121}} = 1800\\ \Rightarrow x = 1800.\dfrac{1}{{40}} = 45\\y = 1800.\dfrac{1}{{45}} = 40\\z = 1800.\dfrac{1}{{50}} = 36\)
Vậy số sách tham khảo môn Toán lớp 6, lớp 7 và lớp 8 mà thư viện đó mua lần lượt là 45 quyển, 40 quyển và 36 quyển.
Số HS lớp 6A giỏi ít nhất một trong 2 môn Văn hoặc Toán là: (8 + 10) – 5= 13 (học sinh)
mình mới lớp 5 hịc