So sánh:
A = 8 . (32+1). (34+1). ... .(364+1) với B = 3128-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=4(3^2+1)(3^4+1)...(3^64+1)`
`=>2A=(3^2-1)(3^2+1)(3^4+1)...(3^64+1)`
- Ta có:
`(3^2-1)(3^2+1)=3^4-1`
`(3^4-1)(3^4+1)=3^16-1`
`....`
`(3^64-1)(3^64+1)=3^128-1`
Suy ra `2A=3^128-1=B`
`=>A<B`
Rút gọn: (3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
A=(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=2(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3-1)(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^2-1)(3^2 + 1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^4-1)(3^4 + 1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^8-1)(3^8 + 1)(3^16 + 1)(3^32 + 1)
2A=(3^16-1)(3^16 + 1)(3^32 + 1)
2A=(3^32 - 1)(3^32 + 1)
2A=3^64-1
=>A=(3^64-1) /2
(không ghi cách giải)
đáp án : a > 5/6
chúc bn
hok tốt
(ko ghi đề)
đáp án : a > 5 / 6
chúc b
hk tốt
\(\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}-1\right)\\ ...\\ 2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\\ 2A=3^{128}-1\)
Vậy \(A=\dfrac{3^{128}-1}{2}.\)
\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)
\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\) (Do 1 - 1/2017 < 1)
Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)
Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)
\(\dfrac{1}{32}>\dfrac{1}{40}\)
\(\dfrac{1}{33}>\dfrac{1}{40}\)
\(\dfrac{1}{34}>\dfrac{1}{40}\)
\(\dfrac{1}{35}>\dfrac{1}{40}\)
\(\dfrac{1}{36}>\dfrac{1}{40}\)
\(\dfrac{1}{37}>\dfrac{1}{40}\)
\(\dfrac{1}{38}>\dfrac{1}{40}\)
\(\dfrac{1}{39}>\dfrac{1}{40}\)
\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)
Vậy \(S>\dfrac{1}{4}\)
Xét biểu thức A
\(A=8\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(...=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1\)
Vậy \(A=B\)