2714 : 8110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,81^3=\left(9^2\right)^3=9^6\)
Vì \(9^{27}>9^6\) nên \(9^{27}>81^3\)
\(b,5^{14}=\left(5^2\right)^7=25^7\)
Vì \(25^7< 27^7\) nên \(5^{14}< 27^7\)
\(c,10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}< 1024^{10}\) nên \(10^{30}< 2^{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có:
+) \(81^4\equiv60\left(mod71\right)\)
\(\left(81^4\right)^2\equiv60^2\equiv50\left(mod71\right)\) (1)
+) \(27^5\equiv20\left(mod71\right)\)
\(\left(27^5\right)^2\equiv20^2\equiv45\left(mod71\right)\) (2)
+) \(9^7\equiv54\left(mod71\right)\)
\(\left(9^7\right)^2\equiv54^2\equiv5\left(mod71\right)\) (3)
Từ (1), (2), (3):
\(\Rightarrow81^8-27^{10}-9^{14}\equiv50-45-5\equiv0\left(mod71\right)\)
=> \(81^8-27^{10}-9^{14}⋮71\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\left(3^4\right)^8-\left(3^3\right)^{10}-\left(3^2\right)^{14}\)
\(=3^{32}-3^{30}-3^{28}\)
\(=3^{28}.\left(3^4-3^2-1\right)\)
\(=3^{28}.71_{ }\)
=> \(81^8-27^{10}-9^{14}\) chia hết cho 71
![](https://rs.olm.vn/images/avt/0.png?1311)
Tính nhanh 27 x 35 + 17 x 81 + 27 x 14
27 x 35 + 17 x 81 + 27 x 14
= 27 x ( 35 + 14 ) + 17 x 81
= 27 x 49 + 17 x 81
= 1323 + 1377
= 2700
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3^{29}\)< \(10^{20}\)
b) \(3^{11}\)< \(17^{14}\)
c) \(27^4\): \(9^3\). \(81^4\) > \(16^3\).\(32^4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`@` `\text {Ans}`
`\downarrow`
`a,`
`5.125.25 \div 5^6`
`=`\(5\cdot5^3\cdot5^2\div5^6\)
`=`\(5^{1+3+2-6}=5^{6-6}=5^0=1\)
`b,`
\(2^{14}\div\left(2^6\cdot32\right)\)
`=`\(2^{14}\div\left(2^6\cdot2^5\right)\)
`=`\(2^{14}\div2^{11}=2^3\)
`c,`
`3.3^5\div 27`
`=`\(3\cdot3^5\div3^3\)
`=`\(3^{1+5-3}\)
`=`\(3^3\)
`d,`
\(2^{15}\div\left(2^6\cdot32\right)=2^{15}\div\left(2^6\cdot2^5\right)=2^{15}\div2^{11}=2^4\)
`e,`
\(3^2\cdot27\div81=3^2\cdot3^3\div3^4=3\)
`g,`
\(100\cdot1000\cdot10000-10^9=10^2\cdot10^3\cdot10^4-10^9\)
`=`\(10^9-10^9=0\)
`h,`
\(125^4\div5^9=\left(5^3\right)^4\div5^9=5^{12}\div5^9=5^3\)
\(\left(3^3\right)^{14}:\left(3^4\right)^{10}=3^{42}:3^{40}=3^{42-40}=3^2=9\)
(33)14:(34)10=342:340=32=9