CMR:\(^{\left(2x-3\right)^2}\)=16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!
a.
- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)
- Với \(-1< m< 1\Rightarrow1-m^2< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
Vậy pt đã cho có nghiệm với mọi m
b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được
c.
Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)
Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R
\(f\left(2\right)=4-5=-1< 0\)
\(f\left(3\right)=6-5=1>0\)
\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m
Hay pt đã cho luôn luôn có nghiệm
NX: 2x+3; 5(2x+3) và 2(2x+3) cùng dấu
+TH1: 2x+3 \(\ge\)0 => x \(\ge\frac{-3}{2}\)
=> 5(2x+3), 2(2x+3) \(\ge\)0
=> |5(2x+3)| = 5(2x+3); |2(2x+3)| = 2(2x+3); |2x+3| = 2x+3
=> (2x+3)(5+2+1) = 16
=> 2x+3 = 2
=> 2x = -1
=> x = -1/2 (t/m)
+ TH2: 2x+3 < 0 => x < -3/2
cmtt => -5(2x+3) - 2(2x+3) - (2x+3) = 16
=> (2x+3)(-5-2-1) = 16
=> 2x+3 = -2
=> 2x = -5
=> x = -5/2 (t/m)
/8(2x+3/ = 16
/2x+3/=2
2x+3=2 hoặc 2x+3=-2
2x=-1 hoặc 2x=-5
x=-1/2 hoặc x=-5/2
bạn trả lời nhé
Ta có: \(\left|5\left(2x+3\right)\right|+\left|2\left(2x+3\right)\right|+\left|2x+ 3\right|=16\)
\(\Rightarrow5\left|2x+3\right|+2\left|2x+3\right|+\left|2x+3\right|=16\)
\(\Rightarrow\left|2x+3\right|\left(5+2+1\right)=16\)
\(\Rightarrow\left|2x+3\right|.8=16\)
\(\Rightarrow\left|2x+3\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=2\\2x+3=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-1\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{-5}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{-5}{2}\end{matrix}\right.\).
=>6xy-8y-9x+12=6xy-15y+2x-5 và 2y-6+16=3x+6
=>-9x-8y+12+15y-2x+5=0 và 3x+6-2y-10=0
=>-11x+7y=-17 và 3x-2y=4
=>x=6 và y=7