K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

ta có:

15n=225

152=225 =>n=2

vậy n=2

31 tháng 10 2015

15n = 255

Suy ra n = 2 vì 152 = 255

Tick nha

2 tháng 7 2017

a)

1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11... 
11^x-1 chia het cho 10 voi moi x 
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10 
suy ra 11^9+11^8+...+11+1 chia het cho 10 
suy ra 11^10-1 chia het cho 100

2 tháng 7 2017

1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...

11^x-1 chia het cho 10 voi moi x

suy ra: 11^9+11^8+...+11+1-10 chia het cho 10

suy ra 11^9+11^8+...+11+1 chia het cho 10

suy ra 11^10-1 chia het cho 100

16 tháng 7 2017

a) Phân tích  15 n   + 15 n + 2 = 113.2. 15 n .

b) Phân tích  n 4   –   n 2 = n 2 (n - 1)(n +1).

D )     F = 150 N .

3 tháng 8 2021

\(4^n+15n-1\) chia hết cho 9

Đặt \(A_n=4^n+15n-1\)

với n = 1 ⇒ \(A_1\) = 4 + 15 – 1 = 18 chia hết 9

+ Giả sử đúng với n = k ≥ 1 nghĩa là:

\(A_k\) = ( \(4^k\) + 15k – 1 ) chia hết 9 ( giả thiết quy nạp )

Ta cần chứng minh: \(A_{k+1}\) chia hết 9

Thật vậy, ta có:

\(A^k\) + 1 = \(4^{k+1}\) + 15(k + 1) – 1

            = 4.\(4^k\) + 15k + 15 – 1

            = 4.( \(4^k\) + 15k – 1 ) – 45k+ 4+ 15 – 1

            = 4.( \(4^k\) +15k- 1 ) – 45k + 18

            = 4. \(A_k\) + ( - 45k + 18 ) 

Ta có: \(A_k\) ⋮ 9 và ( - 45k + 18) = 9 (- 5k + 2 ) ⋮ 9

Nên \(A_{k+1}\) ⋮ 9

Vậy \(4^n+15n-1\) chia hết cho 9 ∀ n ∈ N

NV
3 tháng 8 2021

- Với \(n=3k\)

\(4^n+15n-1=4^{3k}+15.3k-1=64^k+45k-1\equiv1+0-1\equiv0\left(mod9\right)\)

- Với \(n=3k+1\)

\(4^{3k+1}+15\left(3k+1\right)-1=4.64^k+45k+14\equiv4+0-14\equiv0\left(mod9\right)\)

- Với \(n=3k+2\)

\(4^{3k+2}+15\left(3k+2\right)-1=16.64^k+45k+29\equiv16+29\equiv0\left(mod9\right)\)

Vậy \(4^n+15n-1⋮9\)

3 tháng 10 2018

@Phùng Hà Châu

3 tháng 3 2016

5:\(\frac{2}{5}\)=37.5

3 tháng 3 2016

30 ung ho nha

2 tháng 12 2017

Ta lấy bội của 21 có 2 chử số =0 ;21;42;63;84

nếu n = 1 => tong này ko chia hết cho 21

nếu n=2 => tổng này =33 ko chia hết cho 21

nếu n=3 => tổng này =48 loại

nếu n=4 => tổng này =63 thỏa mãn

=> n = 4