chứng minh a024 chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) dcba = 1000d + 100c + 10b + a
= 1000d + 100c + 8b + (2b + a)
Thấy 100d + 100c + 8d chia hết cho 4
=> 2a +b chia hết cho 4
b) Tương tự
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!
a.b+1 chia hết cho 8
=> a.b chia 8 dư 7
=> a.b chia 8 dư 1.7
=> a hoặc b chia 8 dư 1
và b hoặc a chia 8 dư 7
=> a + b chia 8 dư 1+7
=> a+b chia 8 dư 8
=> a+b chia hết cho 8 (đpcm)
Vì trong tích có chứa 2 . 4=8:8
--- tổng (d+2b+4c) : 8
k mình nhé
CMR: (d+2c+4b)chia hết cho 8 thì abcd chia hết cho 8
Ta có: abcd = a. 1000 + b. 100 + c.10 + d
= 1000a + 96b + 8c + (4b + 2c + d)
Dễ thấy 1000 a ; 96b và 8c đều chia hết cho 8 => Nếu (d + 2c + 4b) chia hết cho 8 thì abcd chia hết cho 8 (ĐPCM)
Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.
Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$.
$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)
Do đó $p$ chia $3$ dư $1$
Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)
b.
$\overline{abcd}=1000a+100b+10c+d$
$=1000a+96b+8c+(d+2c+4b)$
$=8(125a+12b+c)+(d+2c+4b)$
Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$
$\Rightarrow \overline{abcd}\vdots 8$
Ta có đpcm.
ta thấy:a024=a000+24=a*1000+24
trong đó:1000 chia hết cho 8.
24 chia hết cho 8.
=>a024 chia hết cho 8.
k nha!!!!!!!