K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

DKXD: \(4\le x\le6\)

Ta có:

\(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\)

Xét: \(x^2-10x+27=\left(x-5\right)^2+2\ge2\)

Dau "=" xảy ra khi x= 5 (1)

Lại xét: \(\sqrt{6-x}.1+\sqrt{x-4}.1\le\sqrt{\left(6-x+x-4\right)\left(1+1\right)}\)(BDT BU-NHI-A..)

\(=2\). Dau '=" xảy ra khi x= 5 (2)

Tu (1) và (2) => dang thuc xảy ra khi x= 5(TMDKXD)

28 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)

=>3<=x<=5

\(\sqrt{x-3}+\sqrt{5-x}=2\)

=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)

=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)

=>x-4=0

=>x=4

1. Giải phương trình:1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)5/ \(x^2-\left(m+1\right)x+2m-6=0\)6/ \(615+x^2=2^y\)2.a, Cho các số dương a,b thoả mãn \(a+b=2ab\).Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).Tính GTNN và GTLN của biểu thức \(P=x+y\).3. Cho hàm...
Đọc tiếp

1. Giải phương trình:

1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)

3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)

4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

5/ \(x^2-\left(m+1\right)x+2m-6=0\)

6/ \(615+x^2=2^y\)

2.

a, Cho các số dương a,b thoả mãn \(a+b=2ab\).

Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).

b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).

Tính GTNN và GTLN của biểu thức \(P=x+y\).

3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).

4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).

0
11 tháng 11 2018

pt <=> \(2x^2-20x+54-2\sqrt{x-4}-2\sqrt{6-x}=0\)

<=> \(\left(2x^2-20x+50\right)+\left(x-4-2\sqrt{x-4}+1\right)+\left(6-x-2\sqrt{6-x}+1\right)=0\)

<=> \(2\left(x-5\right)^2+\left(\sqrt{x-4}-1\right)^2+\left(\sqrt{6-x}-1\right)^2=0\)

<=> x = 5

6 tháng 7 2018

bài 1 :điều kiện\(4\le x\le6\) 

 ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)

\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)

bài 2 :điều kiện : \(2\le x\le4\)

ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)

NV
9 tháng 9 2020

ĐKXĐ: ...

\(VT\le\sqrt{2\left(x-4+6-x\right)}=2\)

\(VP=\left(x-5\right)^2+2\ge2\ge VT\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-4=6-x\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow x=5\)

18 tháng 12 2016

Bình phương liên tục 2 vế và bạn có một pt bậc 8!!!

Đùa thôi chứ cách giải nghiêm túc nè.

Nhận xét: Đoán trước \(x=5\) là nghiệm nên ta sử dụng lượng liên hợp để có nhân tử \(x-5\) 2 vế.

\(\sqrt{6-x}-1+\sqrt{x-4}-1=x^2-10x+25\)

\(\frac{5-x}{\sqrt{6-x}+1}+\frac{x-5}{\sqrt{x-4}+1}=\left(x-5\right)^2\)

Ta xét \(x\ne5\) ta còn lại \(x-5=\frac{1}{\sqrt{x-4}+1}-\frac{1}{\sqrt{6-x}+1}\)

Ta xét \(x< 5\). Khi đó \(\frac{1}{\sqrt{x-4}+1}-\frac{1}{\sqrt{6-x}+1}>0>x-5\) nên vô nghiệm.

Trường hợp \(x>5\) tương tự. Một bài toán hay!

18 tháng 12 2016

Vậy thôi chứ bài này ko cần xoắn như Trần...Đạt

Đk:...

\(VT=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\left(1\right)\)

\(VP^2=\left(6-x\right)+\left(x-4\right)+2\sqrt{\left(6-x\right)\left(x-4\right)}\)

\(=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)

\(\le2+\left(6-x\right)+\left(x-4\right)=4\) (BĐT AM-GM) 

\(\Rightarrow VP^2\le4\Rightarrow VP\le2\left(2\right)\)

Từ (1) và (2) ta có dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2-10x+27=2\\\sqrt{6-x}+\sqrt{x-4}=2\end{cases}}\)\(\Leftrightarrow x=5\)

25 tháng 6 2018

a) Điều kiện: \(2,5\ge x\ge1,5\)

Áp dụng bất đẳng thức cauchy, ta có:

\(VT\ge\dfrac{2x-3+1+5-2x+1}{2}=2\)

\(VP=3\left(x-2\right)^2+2\ge2\)

Đẳng thức xảy ra khi và chỉ khi x = 2

25 tháng 6 2018

b) Link tham khảo: https://diendantoanhoc.net/topic/72109-gi%E1%BA%A3i-pt-sqrt-x-4-sqrt-6-x-x2-10x-27/

30 tháng 9 2019

Áp dụng BĐT Cauchy - Shwarz ta có :

\(VT^2=\left(\sqrt{x-4}+\sqrt{6-x}\right)^2\)

\(\le\left(1+1\right)\left(x-4+6-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\)

Và \(VP=x^2-10x+27=x^2-10x+25+2\)

\(=\left(x-5\right)^2+2\ge2\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow VP\le VT=2\)

Khi \(VP=VT=2\Rightarrow x=5\)

Chúc bạn học tốt !!!