cho A=
7+7
^2+7^3+..............+7^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
A = \(\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\)
Đặt C = 1 + 7 + 72 + 73+...+711
7C = 7 + 72 + 73 + ... + 711 + 712
=> 6C = 712 - 1
C = \(\dfrac{7^{12}-1}{6}\)
Đặt D = 1 + 7 + 72 + 73+...+710
7D = 7 + 72 + 73 + ... + 710 + 711
=> 6D = \(7^{11}-1\)
D = \(\dfrac{7^{11}-1}{6}\)
=> A = \(\dfrac{\dfrac{7^{12}-1}{6}}{\dfrac{7^{11}-1}{6}}\)
A = \(\dfrac{7^{12}-1}{6}\) : \(\dfrac{7^{11}-1}{6}\)
A = \(\dfrac{7^{12}-1}{6}.\dfrac{6}{7^{11}-1}\)
A = \(\dfrac{7^{12}-1}{7^{11}-1}\) = 7, 000000003
Lại có:
B = \(\dfrac{1+3+3^2+3^3+...+3^{11}}{1+3+3^2+3^3+...+3^{10}}\)\
Đặt H = \(1+3+3^2+3^3+...+3^{11}\)
3H = \(3+3^2+3^3+...+3^{12}\)
=> 2H = \(3^{12}-1\)
H = \(\dfrac{3^{12}-1}{2}\)
Đặt Q = \(1+3+3^2+3^3+...+3^{10}\)
3Q = \(3+3^2+3^3+...+3^{10}+3^{11}\)
=> 2Q = \(3^{11}-1\)
Q = \(\dfrac{3^{11}-1}{2}\)
=> B = \(\dfrac{\dfrac{3^{12}-1}{2}}{\dfrac{3^{11}-1}{2}}\)
B = \(\dfrac{3^{12}-1}{2}:\dfrac{3^{11}-1}{2}\)
B = \(\dfrac{3^{12}-1}{2}.\dfrac{2}{3^{11}-1}\)
B = \(\dfrac{3^{12}-1}{3^{11}-1}\)
B = 3, 00001129
Vì 7, 000000003 > 3, 00001129
=> A > B
Vậy A > B
Có 7 chia hết cho 7
Có 7^2 chia hết cho 7
.....
Có 7^12 chia hết cho 7
=>7+7^2+7^3+.....+7^12 chia hết cho 7
=> A chia hết cho 7
cho A=7+7 mũ 2+7 mũ 3+...+7 mũ 10+7 mũ 11 +7 mũ 12
chứng tỏ A chia hết cho 7
7+7^2+7^3+.....+7^12 chia hết cho 7
=> A chia hết cho 7
a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)
Ta có: 55 chia hết cho 11
Nên \(7^4.55\)chia hết cho 11
Hay \(7^6+7^5-7^4\)chia hết cho 11
Câu b,c làm tương tự
A=(7+73).(1+7+72+73+..+79)
=350.B
Vì 350 chia hết cho 10 nên A chia hết cho 10
=
\(A=\dfrac{7}{10}+\dfrac{7}{10^2}+\dfrac{7}{10^3}+...+\dfrac{7}{10^{2011}}\)
\(\Rightarrow10A=7+\dfrac{7}{10}+\dfrac{7}{10^2}+...+\dfrac{7}{10^{2010}}\)
\(\Rightarrow10A-A=7+\dfrac{7}{10}+\dfrac{7}{10^2}+...+\dfrac{7}{10^{2010}}-\left(\dfrac{7}{10}+\dfrac{7}{10^2}+\dfrac{7}{10^3}+...+\dfrac{7}{10^{2011}}\right)\)
\(\Rightarrow9A=7-\dfrac{7}{10^{2011}}\)
\(\Rightarrow A=\dfrac{7}{9}.\left(1-\dfrac{1}{10^{2011}}\right)\)
Ta có \(A=\frac{7^{10}}{1+7+7^2+7^3+...+7^9}\)
Đặt \(C=1+7+7^2+7^3+....+7^9\)
Nên \(7.C=7+7^2+7^3+7^4+...+7^{10}\)
Suy ra \(7C-C=7^{10}-1\)hay \(6C=7^{10}-1\)
Khi đó \(\frac{7^{10}}{7^{10}-1}=\frac{7^{10}-1+1}{7^{10}-1}=1+\frac{1}{7^{10}-1}=\frac{A}{6}\)
Ta có \(B=\frac{5^{10}}{1+5+5^2+5^3+....+5^9}\)
Đặt \(D=1+5+5^2+5^3+....+5^9\)
Nên \(5.C=5+5^2+5^3+5^4+....+5^{10}\)
Suy ra \(5C-C=5^{10}-1\)hay \(4C=5^{10}-1\)
Khi đó \(\frac{5^{10}}{5^{10}-1}=\frac{5^{10}-1+1}{5^{10}-1}=1+\frac{1}{5^{10}-1}=\frac{B}{4}\)
Vì \(1=1;\frac{1}{5^{10}-1}>\frac{1}{7^{10}-1}\Rightarrow1+\frac{1}{5^{10}-1}>1+\frac{1}{7^{10}-1}\Rightarrow\frac{B}{4}>\frac{A}{6}\)
\(\frac{B}{4}>\frac{A}{6}\Rightarrow6B>4A\Rightarrow3B>2A\Rightarrow1,5B>A\Rightarrow B< A\)
Cách làm của những bài thế này là:
\(A = 7 + 7^2 + 7^3 + \ldots +7^{10}\\ 7A = 7^2 + 7^3 + 7^4 + \ldots +7^{111}\)
Trừ theo vế ta được:
\(7A-A = (7^2-7^2) + (7^3-7^3)+...+(7^{10}-7^{10}) + 7^{11}-7\)
Vây: \(A=\frac{7^{11}-7}{6}\)