phan tich da thuc thanh nhan tu (x-2)^3+64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-64=x^3-4^3\)
\(\Rightarrow\left(x-4\right)\left(x^2+4x+4^2\right)\)
Sửa đề: x^4+64
x^4+64
=x^4+16x^2+64-16x^2
=(x^2+8)^2-(4x)^2
=(x^2-4x+8)(x^2+4x+8)
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
\(1-3x-x^3+3x^2\)\(=\left(1-x^3\right)+\left(3x^2-3x\right)\)
\(=\left(1-x\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-x^2-x-1\right)=\left(x-1\right)\left(2x-x^2-1\right)\)
Thay `x = 2` ta được :
`x^4+x^3-9x^2+10x-8`
`= 2^4 + 2^3 - 9*2^2 + 10*2 - 8`
`= 16 + 8 - 36 + 20 - 8`
`= 0`
Vậy `x = 2` là nghiệm của phương trình trên
Do đó ta thực hiện phép chia :
\(\left(x^4+x^3-9x^2+10x-8\right):\left(x-2\right)\)
x^4+x^3-9x^2+10x-8 x-2 x^3+3x^2-3x+4 x^4-2x^3 - 3x^3-9x^2+10x-8 3x^3-6x^2 - -3x^2+10x-8 -3x^2+6x - 4x-8 4x-8 - 0
Vậy \(x^4+x^3-9x^2+10x-8=\left(x-2\right)\left(x^3+3x^2-3x+4\right)\).
bạn có biết viết dấu ko nếu ko biết mik bảo cho s là sắc f là huyền x là ngã r là hỏi j là nặng
( x-2 ) ^3 + 4^3
= hằng đẳng thức thứ 6 nha pạn
lam luon di bam dung cho