tìm min của B=1/(-m^2+2m+6)
tìm GTNN của C=\(\frac{x^2-1}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow3.\left|x\right|\ge0\Rightarrow A=3.\left|x\right|-2=3.\left|x\right|+\left(-2\right)\ge-2\)
Dấu bằng xảy ra khi: |x| = 0 <=> x = 0
Vậy Amin = -2 khi và chỉ khi x = 0
2) Vì \(\left|x-8\right|\ge0\left(\forall x\right)\Rightarrow B=\left|x-8\right|+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> |x-8| = 0 <=>x - 8 = 0 <=> x = 8
Vậy Bmin = 3/4 khi và chỉ khi x = 8
3) Vì \(\left(x-6\right)^{10}\ge0\left(\forall x\right);\left|x-y\right|\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x-6\right)^{10}+\left|x-y\right|+9\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-6\right)^{10}=0\\\left|x-y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-6=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\x=y\end{cases}\Leftrightarrow}x=y=6}\)
Vậy GTNN của biểu thức = 9 khi và chỉ khi x = y = 6
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
\(B=\frac{1}{-m^2+2m+6}=\frac{1}{7-\left(m^2-2m+1\right)}=\frac{1}{7-\left(m-1\right)^2}\)
B có GTNN khi \(7-\left(m-1\right)^2\) có GTLN
Mà \(7-\left(m-1\right)^2\le7\forall m\)
Dấu = xảy ra khi m=1
Vậy min B=1/7 <=> m=1