Chứng minh rằng n và n^5 có chữ số tận cùng giống nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 121000 và 2100 đều có cơ số tận cùng là 2
Số mũ chỉ gấp nhau 10 lần
=> 121000 và 2100 có chữ số tận cùng giống nhau ( đpcm )
Ta cm : n^5-n có chữ số tận cùng = 0
Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\\ n⋮2\Rightarrow A⋮2\\ nko⋮2\Rightarrow n^2-1;n^2+1⋮2\Rightarrow A⋮2\)
\(n⋮3\Rightarrow A⋮3\\ nko⋮3\\ \Rightarrow n^2chia3duw1\\ \Rightarrow n^2-1⋮3\\ \Rightarrow A⋮3\)
\(n⋮5\Rightarrow A⋮5\\ nko⋮5\Rightarrow n^2chia5du1;4\\ n^2:5du1\\ \Rightarrow n^2-1⋮5\\ \Rightarrow A⋮5\\ n^2:5du4\\ \Rightarrow n^2+1⋮5\\ \Rightarrow A⋮5\)
(2;3;5) ntoCN từng đôi => n^5-n chia hết cho 30
=> n^5-n có t/c = 0
=> đpcm
Gọi 11 số đó là a1,a2..a11
Đem chia 11 số đó cho 10
Vì có 11 phép chia mà chỉ cho 10 số dư
\(\Rightarrow\)có 2 số cx số dư khi chia cho 10
Gọi 2 số đó là d\(_k\) và d\(_j\)\(\Rightarrow\)d\(_k\) và d\(_j\) chia hết cho 10(đpcm)
Gọi 11 số đó là a1, a2,...,a11
Đem chia 11 số đó cho 10
Vì có 11 phép chia mà chỉ cho 10 số dư
=> Có 2 số có chung số dư khi chia cho 10
Gọi 2 số đó là ak và aj
=> ak-aj chia hết cho 10
=> dpcm
Một số tự nhiên luôn có 1 trong 10 số dư khi chia cho 10
=> trong 11 số tự nhiên bất kì thì luôn có 2 số có cùng số dư trong phép chia cho 10
=> trong 11 số tự nhiên bất kì luôn có 2 số có chữ số tận cùng giống nhau(đpcm)
\(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮10\)
\(\Rightarrow n^5,n\) co chữ xô tận cùng giông nhau