Tìm giá trị lớn nhất của biểu thức:
\(M=-9x^2+6x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=-9x^2+6x=-9x^2+6x-1+1=-\left(9x^2-6x+1\right)+1=-\left(3x-1\right)^2+1\)
Vì: \(-\left(3x-1\right)^2+1\le1\forall x\)
=> Giá trị lớn nhất của M là 1 tại \(-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)
=.= hok tốt!!
Ta có: \(N=-9x^2+6x+5\)
\(=-\left(9x^2-6x-5\right)\)
\(=-\left(9x^2-6x+1-6\right)\)
\(=-\left(3x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
Ta có: F = 5 + 6x + 9x^2
=> F = (3x)^2 + 2.3x.1 + 1^2 + 4
=> F = (3x+1)^2 +4 \(\ge4\). Dấu "=" xảy ra \(\Leftrightarrow3x+1=0\Rightarrow x=\frac{-1}{3}\)
Vậy: GTNN của F = 4 khi x = -1/3
1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)
\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)
2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
\(maxM=6\Leftrightarrow x=-1\)
3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)
\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)
Đặt A 9x2 + 6x - 1 = 9x2 + 6x + 1 - 2 = (3x + 1)2 - 2 \(\ge\)-2
=> Min A = -2
Dấu "=" xảy ra <=> 3x + 1 = 0
<=> x = -1/3
Vậy Min A = -2 <=> x = -1/3
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
TL:
a,\(-\left(x^2-2x+1\right)+1\)1
\(-\left(x-1\right)^2+1\) \(\le\) 1
=>giá trị lớn nhất của biểu thức là 1
vậy........
b,\(-\left(9x^2+6x+1\right)+20\)
\(-\left(3x+1\right)^2+20\)
\(\le20\)
=>giá trị lớn nhất cuar biểu thức là 20
vậy.........
hc tốt
Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.
a) A=2x−x2A=2x−x2+1−1A=1−(x2−2x+1)A=1−(x−1)2Do (x−1)2≥0∀x⇒A=1−(x−1)2≤1∀x Dấu “=” xảy ra khi: (x−1)2=0⇔x−1=0⇔x=1Vậy MaxA=1 khi x=1
b) B=19−6x−9x2B=20−1−6x−9x2B=20−(1+6x+9x2)B=20−(1+3x)2Do (1+3x)2≥0∀x⇒B=20−(1+3x)2≤20∀xDấu "=" xảy ra khi:(1+3x)2=0⇔1+3x=0⇔3x=−1⇔x=−13Vậy MaxB=20 khi x=−13
M=-9x2+6x
=-(3x)2+6x
=-[(3x)2+2.3x.1+12-1]
=-[(3x+1)2-1]
=-(3x+1)2+1
mà -(3x+1)2\(\le\)0
=>-(3x+1)2+1\(\le\)1
=>M\(\le\)1
=>GTLN của M là 1(Khi và chỉ khi (3x+1)2=0
<=> x=\(\dfrac{-1}{3}\))
\(M=-9x^2+6x=-\left(9x^2-6x+1\right)+1=-\left(3x-1\right)^2+1\le1\)
Vậy GTLN của M là 1 khi x = \(\dfrac{1}{3}\)