K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

Ta có : \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3\)

\(=\left(x^2+2x+\dfrac{7}{2}-\dfrac{1}{2}\right)\left(x^2+2x+\dfrac{7}{2}+\dfrac{1}{2}\right)+3\)

\(=\left(x^2+2x+\dfrac{7}{2}\right)^2-\dfrac{1}{4}+3\)

\(=\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\)

Do \(\left(x^2+2x+\dfrac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\)

\(\Rightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

\(\left(đpcm\right)\)

:D

26 tháng 8 2020

Bài làm:

a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^4+3x^2+3=\left(x^4+3x^2+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)

=> đpcm

26 tháng 8 2020

a) -x2 + 4x - 5 = -x2 + 4x - 4 - 1

                       = -( x2 - 4x + 4 ) - 1

                       = -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

b) x4 + 3x2 + 3 ( * )

Đặt t = x2 

(*) <=> t2 + 3t + 3

     <=> ( t2 + 3t + 9/4 ) + 3/4

     <=> ( t + 3/2 )2 + 3/4

     <=> ( x2 + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

13 tháng 9 2018

câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x 

câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x

13 tháng 9 2018

2 câu cuối ko rõ đề

AH
Akai Haruma
Giáo viên
27 tháng 8 2021

Lời giải:

a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên

$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$

Vậy biểu thức luôn nhận giá trị âm với mọi $x$

b.

$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$

$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

c.

$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

d.

$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

1 tháng 5 2020

Ta có :

2x4 + 1 - 2x3 - x2 

= 2x3 ( x - 1 ) - ( x - 1 ) ( x + 1 )

= ( x - 1 ) ( 2x3 - x - 1 )

= ( x - 1 ) [ ( x3 - x ) + ( x3 - 1 ) ]

= ( x - 1 ) [ x ( x - 1 ) ( x + 1 ) + ( x - 1 ) ( x2 + x + 1 ) ]

= ( x - 1 )2 ( x2 + x + x2 + x + 1 )

= ( x - 1 )2 ( 2x2 + 2x + 1 )

= ( x - 1 )2 ( x2  + ( x + 1 )2 ) \(\ge\)0

Suy ra đpcm

AH
Akai Haruma
Giáo viên
21 tháng 5 2022

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

18 tháng 12 2017

a) A=x4 +3x2+3

A=(x2)2+2.\(\dfrac{3}{2}\) x2+\(\left(\dfrac{3}{2}\right)^2\) +\(\dfrac{3}{4}\)

A=(x4+3x2+\(\dfrac{9}{4}\) )+\(\dfrac{3}{4}\)

A=\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)

do \(\left(x^2+\dfrac{3}{2}\right)^2\ge0\forall x\)

=>\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

=>A≥\(\dfrac{3}{4}\)

vậy A >1(đpcm)