tìm x biết\(\frac{x}{y^2}=2\)và\(\frac{x}{y}=16\)\(\left(y\ne0\right)\)
ai trả lời hộ mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\)
\(x^{16}+y^{16}+1+1+1+1+1+1\ge8\sqrt[8]{x^{16}y^{16}}=8x^2y^2\)
\(\Rightarrow A\ge x^4y^4+\frac{1}{4}\left(8x^2y^2-6\right)-\left(x^4y^4+2x^2y^2+1\right)=-\frac{5}{2}\)
Dấu "=" xảy ra khi \(x^2=y^2=1\)
Vậy GTNN của A là -5/2.
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
a) Biến đổi vế phải, ta có :\(\frac{-3x\left(x-y\right)}{y^2-x^2}=\frac{3x\left(x-y\right)}{x^2-y^2}=\frac{3x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{3x}{x+y}\) = vế trái \(\Rightarrowđpcm\)
c)Biến đổi vế phải ta có: \(\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=\frac{x+y}{3a}=vt\Rightarrowđpcm\)
\(x+\left(\frac{-31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
<=>\(x+x=\frac{31^2}{12^2}+\frac{49^2}{12^2}\)
<=>\(2x=\frac{3362}{144}=\frac{1681}{72}\)
<=>\(x=\frac{1681}{144}\)
=>\(y^2=x+\left(-\frac{39}{12}\right)^2=\frac{1681}{144}+\frac{1521}{144}=\frac{1601}{72}\Rightarrow y=^+_-\sqrt{\frac{1601}{72}}\)
Từ \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{-2}{x^2}=\frac{-xz^2-yz^2}{z^2+1}\)(1)
=> \(\frac{x+y}{-17}=\frac{-xz^2-yz^2}{z^2+1}\Rightarrow\frac{x+y}{-17}=\frac{-z^2\left(x+y\right)}{z^2+1}\)
=> (z2 + 1)(x + y) = 17z2(x + y)
=> z2 + 1 = 17z2
=> 16z2 = 1
=> \(z^2=\frac{1}{16}\Rightarrow\orbr{\begin{cases}z=\frac{1}{4}\\z=-\frac{1}{4}\end{cases}}\)
Từ (1) => \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{3x+y-x-y}{47+17}=\frac{2x}{64}=\frac{x}{32}\)
Kết hợp với đề bài => \(\frac{x}{32}=\frac{-2}{x^2}\Rightarrow x^3=-64\Rightarrow x=-4\)
\(\frac{3x+y}{47}=\frac{x+y}{-17}\Rightarrow-17\left(3x+y\right)=47\left(x+y\right)\)
=> - 51x - 17y = 47x + 47y
=> -51x - 47x = 17y + 47y
=> -98x = 64y
=> -49x = 32y
=> -49 x (-4) = 32y
=> 196 = 32y
=> y = 6,125
Vậy các cặp (x;y;z) thỏa mãn là (-4 ; 6,125 ; -1/4) ; (-4 ; 6,125 ; 1/4)
Điều kiên \(y\ne0\)
\(\frac{x}{y}=16\Rightarrow x=16y\)thế vào \(\frac{x}{y^2}=2\)
\(\Rightarrow\frac{16y}{y^2}=2\Rightarrow\frac{16}{y}=2\Rightarrow y=8\) thế vào \(\frac{x}{y}=16\Rightarrow\frac{x}{8}=16\Rightarrow x=8.16=128\)
tìm x biếtxy2 =2vàxy =16(y≠0)
\(\Rightarrow x=y^2.2\)
Vì Y khác 0 nên y = 1
\(\Rightarrow x=1^2.2\)
\(\Rightarrow x=2\)
Vậy x = 2