tìm GTLN của biểu thức Q = 4x2 +y2 + 4x -10y + 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-2x^2-10y^2+4xy+4x+4y+2016\)
\(=-2.\left(x^2+5y^2-4xy-4x-4y\right)+2016\)
\(=-2.\left(x^2+4y^2+4-4xy-4x+8y+y^2-12y+36\right)+2.36+2016\)
\(=-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\)
Ta có: \(\left(x-2y-2\right)^2+\left(y-6\right)^2\ge0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]\le0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\le2088\)
\(\Rightarrow A\le2088\)
Vậy giá trị lớn nhất của \(A=2088\) khi: \(\hept{\begin{cases}x-2y-2=0\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2y+2\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=6\end{cases}}\)
\(A=-2x^2+4xy-2y^2+4\left(x-y\right)-2-8y^2+8y+2019\\ A=\left[-2\left(x-y\right)^2+4\left(x-y\right)-2\right]-8\left(y^2-y+\dfrac{1}{4}\right)+2020\\ A=-2\left(x-y-1\right)^2-8\left(y-\dfrac{1}{2}\right)^2+2020\le2020\\ A_{max}=2020\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1+\dfrac{1}{2}=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(A=-\left(4x^2-4x+1\right)-\left(y^2+6y+9\right)+11\\ A=-\left(2x-1\right)^2-\left(y+3\right)^2+11\le11\\ A_{max}=11\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Đặt \(A=-\left(4x^2-4x+1\right)+4=-\left(2x-1\right)^2+4\le4\)
\(A_{max}=4\) khi \(x=\dfrac{1}{2}\)
Ta có: \(-4x^2+4x+3\)
\(=-\left(4x^2-4x-3\right)\)
\(=-\left(4x^2-4x+1-4\right)\)
\(=-\left(2x-1\right)^2+4\le4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(A=-2x^2-10y^2+4xy+4x+4y+2016\\ A=-2x^2+4xy-4y^2+4\left(x-y\right)-2-6y^2+8y+2018\\ A=-2\left(x-y\right)^2+4\left(x-y\right)-2-6\left(y^2-\dfrac{4}{3}y\right)+2018\\ A=-2\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-6\left(y^2-2\cdot\dfrac{2}{3}y+\dfrac{9}{4}\right)+\dfrac{27}{2}+2018\\ A=-2\left(x-y-1\right)^2-6\left(y-\dfrac{3}{2}\right)^2+\dfrac{4063}{2}\le\dfrac{4063}{3}\\ A_{max}=\dfrac{4063}{2}\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)
\(Q=4x^2+y^2+4x-10y+2016\)
\(Q=\left(2x\right)^2+2.2x+1+y^2-2.y.5+25+1990\)
\(Q=\left(2x+1\right)^2+\left(y-5\right)^2+1990\)
Vì \(\left(2x+1\right)^2\ge0\) với mọi x
\(\left(y-5\right)^2\ge0\) với mọi y
\(\Rightarrow\left(2x+1\right)^2+\left(y-5\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(2x+1\right)^2+\left(y-5\right)^2+1990\ge1990\)
\(\Rightarrow Qmin=1990\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=5\end{matrix}\right.\)