K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

Giải casio được không?/

19 tháng 12 2021

\(a,n=1\Leftrightarrow\dfrac{1}{1.2}=\dfrac{1}{2}\left(đúng\right)\\ G\text{/}s:n=k\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}=\dfrac{k}{k+1}\\ \text{Với }n=k+1\\ \text{Cần cm: }\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}\\ \text{Ta có }VT=\dfrac{k}{k+1}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k^2+2k+1}{\left(k+1\right)\left(k+2\right)}\\ =\dfrac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}=VP\)

Vậy với \(n=k+1\) thì mệnh đề cũng đúng

Vậy theo pp quy nạp ta đc đpcm

\(=n\left(2n^2-2n-n+1\right)\)

\(=n\left(n-1\right)\left(2n-1\right)\)

TH1: n=3k

\(A=3k\left(3k-1\right)\left(6k-1\right)⋮3\)

mà A luôn chia hết cho 2(do n;n-1 là hai số liên tiếp)

nên A chia hết cho 6

TH2: n=3k+1

\(A=\left(3k+1\right)\left(3k+1-1\right)\left(6k+2-1\right)\)

\(=\left(3k+1\right)\left(3k\right)\cdot\left(6k+1\right)⋮3\)

=>A chia hết cho 6

TH3: n=3k+2

\(A=\left(3k+2\right)\left(3k+1\right)\left(6k+4-1\right)\)

\(=\left(3k+2\right)\left(3k+1\right)\left(6k+3\right)⋮6\)