K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017
 
 

a)    (2x + 1)(3x - 2) = (5x - 8)(2x + 1)

 <=> 6x2 - x - 2 = 10x2 - 11x - 8

<=>  6x2 - 10x2 - x + 11x -2 + 8 = 0

<=>  -4x2 + 10x + 6  = 0

<=> -2 (2x2 - 5x - 3) = 0

<=> 2x2 - 5x - 3 = 0 

<=> 2x2 - 6x + x - 3 = 0

<=> x (2x + 1) - 3 (2x + 1) = 0

<=> (x - 3) (2x + 1) = 0

* x - 3 = 0  => x = 3

* 2x + 1 = 0 => x = -1/2 

S = {-1/2; 3}

b) 4x2 – 1 = (2x +1)(3x -5)

<=> 4x2 – 1 - (2x +1)(3x -5) = 0

<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0

<=>  (2x + 1) (2x - 1 - 3x + 5) = 0

<=>  (2x + 1) (-x + 4) = 0

* 2x + 1 = 0  <=> x = -1/2

* -x + 4 = 0 <=> x = 4

S = {-1/2; 4}

c) (x + 1)2 = 4(x2 – 2x + 1)

<=> (x + 1)2 - 4(x2 – 2x + 1) = 0

<=> (x + 1)2 - 4(x2 – 1)2 = 0

* (x + 1)2 = 0   <=> x = -1

* 4(x2 - 1)2 = 0  <=> x = 1 và x = -1

S = {-1;  1}

d) 2x3 + 5x2 – 3x = 0

<=> x (2x2 + 5x - 3) = 0

<=> x (2x2 + 6x - x - 3) = 0

<=> x [x(2x - 1) + 3 (2x - 1)] = 0

<=> x (2x - 1) (x + 3) = 0

* x = 0

* 2x - 1 = 0  <=> x = 1/2

* x + 3 = 0  <=> x = -3

S = { -3; 0; 1/2}

 
 
1 tháng 8 2017

\(\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}=\frac{3}{4x-2}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}=\frac{3}{4x-2}\)

\(\Leftrightarrow3x^2+21x+36=0\)

\(\Leftrightarrow x=-3\)

10 tháng 5 2018

\(\text{a) }\left|\left|x+5\right|-4\right|=3\)

- Xét \(x\ge-5\Leftrightarrow\left|x+1\right|=3\):

+) Với \(x\ge-1\Leftrightarrow x+1=3\)

\(\Leftrightarrow x=2\left(T/m\right)\)

+) Với \(-5\le x< -1\Leftrightarrow-x-1=3\)

\(\Leftrightarrow x=-4\left(T/m\right)\)

- Xét \(x< -5\Leftrightarrow\left|x-9\right|=3\)

+) Với \(-5< x< 9\Leftrightarrow9-x=3\)

\(\Leftrightarrow x=6\left(T/m\right)\)

+) Với \(x\ge9\left(loại\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{2;-4;6\right\}\)

\(\text{b) }\left|17x-5\right|-\left|17x+5\right|=0\\ \Leftrightarrow\left|17x-5\right|=\left|17x+5\right|\\ \Leftrightarrow\left[{}\begin{matrix}17x-5=\left(17x+5\right)\\17x-5=-\left(17x+5\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}17x-5=17x+5\\17x-5=-17x-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}17x-17x=5+5\\17x+17x=-5+5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=10\left(loại\right)\\34x=0\end{matrix}\right.\Leftrightarrow x=0\)

Vậy phương trình có nghiệm \(x=0\)

\(\text{c) }\left|3x+4\right|=2\left|2x-9\right|\\ \Leftrightarrow\left[{}\begin{matrix}3x+4=2\left(2x-9\right)\\3x+4=-2\left(2x-9\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x+4=4x-18\\3x+4=-4x+18\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x-4x=-18-4\\3x+4x=18-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-22\\7x=14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=22\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{2;22\right\}\)

26 tháng 8 2017

(d) qua A(5; 6) : y = mx - 5m + 6 (1) 
(C) : (x - 1)² + (y - 2)² = 1 (2) 
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C) 
(x - 1)² + (mx - 5m + 4)² = 1 
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*) 
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép 
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2 
KL : Có 2 đường thẳng cần tìm 
(d1) : y = (3/2)(x - 1) 
(d2) : y = 2x - 4 

∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

6 tháng 4 2016

Phương trình có mỗi một vế thì giải bằng niềm tin chắc?

NV
1 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

NV
1 tháng 7 2021

b.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)

Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)

\(\Rightarrow2x^2-10x=2t^2-8\)

Phương trình trở thành:

\(2t^2-8-3t+6=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x+4}=2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

27 tháng 4 2023

Cậu tách ra `2->3` câu thôi nhe

 

a: =>17x-5x-15-2x-5=0

=>10x-20=0

=>x=2

b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)

=>11x+23=-2x-16

=>13x=-39

=>x=-3(nhận)

c: =>5x+7>=3x-3

=>2x>=-10

=>x>=-5

d: =>5(3x-1)=-2(x+1)

=>15x-5=-2x-2

=>17x=3

=>x=3/17

e: =>4x^2-1-4x^2-3x-2=0

=>-3x-3=0

=>x=-1

g: =>7x-5-8x+2-7<0

=>-x-10<0

=>x+10>0

=>x>-10