K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$

Ta có:
\(\frac{7a-11c}{7b-11d}=\frac{7bt-11dt}{7b-11d}=\frac{t(7b-11d)}{7b-11d}=t(1)\)

\(\frac{7a+11c}{7b+11d}=\frac{7bt+11dt}{7b+11d}=\frac{t(7b+11d)}{7b+11d}=t(2)\)

Từ $(1);(2)\Rightarrow \frac{7a-11c}{7b-11d}=\frac{7a+11c}{7b+11d}$

 

14 tháng 10 2021

Cảm ơn bạn :3

24 tháng 2 2017

a) -12 => -11 => -10 => -9 => -8.

b) -1 => -11 => -5 => -3 => -1

24 tháng 2 2017

..............................................................................................................................................................................................

25 tháng 5 2021

Do \frac{1}{{{n^2}}} < \frac{1}{{{n^2} - 1}} với mọi n ≥ 2 nên 

A < C = \frac{1}{{{2^2} - 1}} + \frac{1}{{{3^2} - 1}} + ... + \frac{1}{{{n^2} - 1}}

Mặt khác:

\begin{matrix} C = \dfrac{1}{{1.3}} + \dfrac{1}{{2.4}} + \dfrac{1}{{3.5}} + ... + \dfrac{1}{{\left( {n - 1} \right)\left( {n + 1} \right)}} \hfill \\ C = \dfrac{1}{2}\left( {\dfrac{1}{1} - \dfrac{1}{3} + \dfrac{1}{2} - \dfrac{1}{4} + \dfrac{1}{3} - \dfrac{1}{5} + ... + \dfrac{1}{{n - 1}} - \dfrac{1}{{n + 1}}} \right) \hfill \\ C = - \left( {1 + \dfrac{1}{2} - \dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right) < \dfrac{1}{2}.\dfrac{3}{2} = \dfrac{3}{4} < 1 \hfill \\ \end{matrix}

Vậy A < 1

25 tháng 5 2021

b.

\begin{matrix} B = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{{\left( {2n} \right)}^2}}} \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + .... + \dfrac{1}{{{n^2}}}} \right) \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + A} \right) \hfill \\ \end{matrix}

\(\Rightarrow P< 0,5\)

15 tháng 8 2016

  Gọi a, b, c lần lượt là số học sinh của 3 lớp, ta có:
b = 8/9a =>a = b : 8/9 = b. 9/8 = b.18/16 = 18b/16
c = 17/16.b = 17b/16
a + b + c = 153 hs
18b/16 + b + 17b/ 16 = 153 hs
51b/16 = 153 hs
b = (153.16) : 51 = 48 hs
a = (18.48):16 = 54 hs
c = (17.48):16 = 51 hs.

7 tháng 9 2020

Bằng 153 bạn nhé 

4 tháng 6 2017

ê mình bấm lộn cái trả lời bênh kia nha

bài làm : điều kiện : x ; y \(\ne\) 0

đặc \(\dfrac{1}{x}\) là a ; \(\dfrac{1}{y}\) là b (a ; b \(\ne\) 0)

hệ phương trình \(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b=\dfrac{3}{4}\\\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}6a+6b=\dfrac{9}{2}\\5a+6b=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\\dfrac{1}{2}+b=\dfrac{3}{4}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{4}\end{matrix}\right.\)

a = \(\dfrac{1}{x}\) = \(\dfrac{1}{2}\) \(\Leftrightarrow\) x = 2

b = \(\dfrac{1}{y}\) = \(\dfrac{1}{4}\) \(\Leftrightarrow\) y = 4

vậy hệ phương trình có nghiệm duy nhất (x = 2 ; y = 4)

4 tháng 6 2017

ĐKXĐ: \(x,y\ne0\)

Đặt \(\dfrac{1}{x}=a,\dfrac{1}{y}=b\left(a,b\ne0\right)\) , ta có:

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{4}\\\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{3}{4}\\5a+6b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a+5b=\dfrac{15}{4}\\5a+6b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{4}\\a+\dfrac{1}{4}=\dfrac{3}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{4}\\a=\dfrac{1}{2}\end{matrix}\right.\) (tmđk) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{1}{x}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\) (tmđk)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(2;4\right)\)

NM
1 tháng 9 2021

ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) Vậy A<1

b. \(4B=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}=1+A< 2\Rightarrow B< 0.5\)

18 tháng 6 2021

Trả lời:

Gọi số học sinh lớp 7a, 7b lần lượt là x và y ( hs; x, y > 0 )

Theo bài ra, ta có:

 \(x+y=70\)và \(x-y=10\)

Số học sinh lớp 7a là:

x = ( 70 + 10 ) : 2 = 40 ( học sinh )

Số học sinh lớp 7b là :

y = 70 - 40 = 30 ( học sinh )

Tỉ lệ học sinh lớp 7a : 7b là: \(\frac{x}{y}=\frac{40}{30}=\frac{4}{3}\)

31 tháng 7 2017

\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)\(=\frac{-\sqrt{x}}{\sqrt{x}+1}.\left(x-1\right)=\frac{-x\sqrt{x}+\sqrt{x}}{\sqrt{x}+1}\)

\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)\(=\frac{-\sqrt{x}}{\sqrt{x}+1}.\left(x-1\right)=\frac{-x\sqrt{x}+\sqrt{x}}{\sqrt{x}+1}\)

5 tháng 8 2021

A=3/2-5/6+/12-9/20+11/30-13/42+15/56-17/72+19/90

A=11/10

hok tốt nha

5 tháng 8 2021

Cái này tôi thấy ko có tính nhanh đc 

bấm máy đi :))

Ra \(\frac{76}{405}\)